ROBOTICS and EXPERT SYSTEMS - 1985

Proceedings of ROBEXS '85

The First Annual Workshop on Robotics and Expert Systems

NASA/Johnson Space Center
June 27-28, 1985

SPONSOR:
. Robotics & Expert Systems Division

CO-SPONSORS:
| Clear Lake - Galveston Section and District 7
of the

Instrument Society of America

© 1SA 1985 - Paper #85-0314
0-87664-872-3/85/081-087/$0 + .50PP

EFFICIENT REAL-TIME

FOR

Robert L.

GARBAGE COLLECTION

Shuler,

. ISP

Jr.

Electrdgnics Engr.
Spacecraft Sgftware Division
NASA Johnsgn Space Center

Hougton,

ABSTRACT

A method is presented for identifying

garbage in a LISP system and adding it badk

to the free list at the time it is created
rather than at some later time. It is
shown that this technique, a modification
of reference counter garbage collection,
(1) successfully corrects deficiencies in
earlier similar systems, (2) can be
efficiently implemented in hardware,
places essentially insignificant
constraints on the LISP system, and (4)
provides the performance characteristics
needed to build effective real-time
systems, virtual memory systems, and
systems with very large main memory.

3)

A LISP interpreter using this system is
analyzed and compared to a conventional
interpreter. The possibilities of re—
programming existing LISP machines are
explored, as well as considerations for
designing a new machine optimized for this
type of garbage collection. The possible
use of this technique in systems limited t
32 bit word sizes (while allowing 32 bit
data items) is discussed.

INTRODUCTION

List processing finds applicatons in
operating system, database, artificial
intelligence, and other software where
information with dynamically varying
structure must be represented. This paper
is principally concerned with the list
processing language L ISP and similar
systems for manipulating linked lists with
fixed cell sizes, and with artificial
intelligence applications requiring
conversational or real-time responsiveness,
although generalization to other systems
should be possible. For a summary of
various applications and languages in thig
area consult Rich (1).

List processing is the manipulation of
linked lists consisting of cells, each of
which contains two pointers. The first
paointer, called the CAR, points to either

81

TX

sub~list or a fundamental data item (atom).
The second pointer, called the CDR, points
to a continuation of the list or to NIL.
Atoms, once introduced, are permanent.

They may be bound to a value, which may be
another atom (symbol or number) or a list.
New lists are constructed by allocating
vacant cells from a free list, and placing
in them pointers to existing lists, parts
of lists, or atoms. Topology of existing
lists is not normally modified, and thus
several lists or atoms may reliably refer
to the same underlying list fragment as
part of their value without having to make
their own copy as would be done in
conventional languages. All accessible
cells may be reached by tracing down either
a list bound to an atam, a list bound to a
stack entry, or the free list. As the
values of atoms are changed, same cells
become inaccessible. Identifying these
cells and adding them back to the free list
is called "garbage collection.” Winston
and Horn (2) provide a good introductary
description of both LISF and garbage
collection.

Mark and Sweep Strategies

In a survey by Cohen (3), garbage
collection strategies are classified as two
main types. "Mark and sweep" strategies
trace down lists from the base atoms to
mark all accessible cells, then sweep
through memory to find all unmarked (and
therefore inaccessible) cells and link them
back onto the free list. This is most
simply done while list processing is
halted, but more complex multi-pass "on-
the—-fly" variations have been devised that
can operate in parallel with list
processing. Nevertheless, if the list
processing operations demand free cells
faster than the collector locates them,
processing will halt while cells are
located. Such behavior may be frequent
and/or of long duration, and is
unacceptable for real-time or
conversational systems. Adding more memory
paradoxically makes the problem worse by
increasing the space in whith the collector
must search.

Reference Count Strategies

Reference count strategies keep a counter
with each cell which is incremented each
time a new reference (pointer) is created
to that cell, and decremented each time an
old reference is deleted. When the counter
becomes zero the cell can be immediately
added back to the free list. Reference
counters have heen popular for use with
operating system data structures where
their overhead is a small percentage of
processing; but, in a LISF type environment
the counter would have to be as large as a3
pointer (increasing storage requirements by
S0%), and significant extra memory cycles
would be required to update them since
references are created and destroyed
continually. Another problem with
reference counters is that they are not
effective in reclaiming "cycliec" list
structures. The observation that
reference counters usually remain small has
led to hybrid schemes which use small
counters, with mark and sweep collection
only occasionally invoked to collect
inaccessible cells whose reference counters
have overflowed (and thus could not be
decremented). This makes the delays less
frequent, but does not eliminate them.

It is the purpose of this paper to describe
two variations of reference counter garbage

collection which solve the problems
mentioned above and provide a good
alternative to mark and sweep caollection
for real-time and conversational
applications. The modifications are so
effective that they may be preferable to
mark and sweep even in non-critical
applications.

COFY—-MODIFIED REFERENCE COUNT STRATEGY

The copy-modified reference count strategy
is based on the observation that for normal
list processing operations the properties
of a list depend only upon its topology,
and not upon the actual cells used to
represent that topology. When a reference
is created to a cell whose reference
counter is already at the maximum value,
then the cell is copied and the reference
is made instead to the new cell, which is
given an initial reference count of one.
Figure 1 illustrates this situation. Of
course, copying the cell creates a new
reference to the cells indicated in the CAR
and CDR of the copied cell. If the maximum
allowed reference count were one, or if all
the cells in a data structure were already
at the maximum reference count, then adding
a new reference to the structure would
result in copying the entire structure much
as a more conventional language would do.

duunt:l

new refepence——- .

existing - countzmax

references. - s

.
™~ .
[rd

1

!
I$

THIS

v ¥ #
A LIST FRAGMENT

value of NEW & EXISTING lists: ((THIS IS) # LIST FRAGMENT)
Figure 1. COPY-MODIFIED LIST STRUCTURE AFTER OVERFLOW

82

Advantages of Copy-Modified Strategy

This strategy does not change in any way
the appearance of lists, so that the bulk
of logic in a list processor is unaffected.
Other than the action taken on overflow,

it is identical to a standard reference
counter strategy. Reference counters can,
however, be made arbitrarily small without
risk of overflow. 8mall counters not only
take up less space in memory, but lend
themselves to various schemes to reduce the
overhead of updating the counters.

Limitations of Copy-~Modified Strategy

Certain operations in LISP, which may be
characterized as "list splicing"
operations, modify directly the values of
the CAR and CDR in a cell. The EQ
operation tests directly for equality of
absolute addresses of two cells. Neither
of these give predictable results when the
underlying structure "‘may or may not"
contain copied cells. Winston and Horn (2)
do not consider use of these operations to
be desirable programming practice. The
author’s own experience is that use of such
operations, even in small programs by
experienced persons, often results in
obscure errors; thus, use of a garbage
collection strategy which makes their use
not possible should not be considered too
much of a drawback.

As with any reference count strategy,
cyclic structures cannot be reclaimed.

This is because a cyclic structure "refers
to itself" at some point, and thus will
have a count of at least one even thaugh
not bound to an atom or stack entry.

Cyclic structures do not naturally occur in
LISF, and may be created only through list
splicing. The application of many LISP
operations to a cyclic structure will
result in apparently infinite operations or
other obscure errors. Froblems whose logic
demands something of a cyclic nature are
normally set up with one or more atoms at
appropriate points within the "cycle, "
which avoids all the above mentioned
difficulties. Thus, this limitation should
not be considered too much of a drawback
either.

Implementation and Verification

An interpreter (written in PASCAL) for the
MACLISP dialect described by Winston and
Horn (2) was available to serve as a
testbed for this collection strategy.
Modification began by adding a reference
counter to each cell, and by defining the
following recursive procedures:

ADD_REF (FTR)

DEL_REF (PTR)

83

ADD_REF performs the operation of
incrementing the counter for the cell
referenced by its argument PTR. If the
counter cannot be incremented, it performs
the allocation of a new cell, copies the
nld cell contents to the new cell, updates
FTR to peint to the new cell, and finally
recursively invokes itself to ADD_REF to
the CAR and CDR of the new cell.

DEL._REF decrements the counter of the cell,
and if zero it adds the cell back to the
free list and recursively does a DEL_REF on
the CAR and CDR of the CELL. Of course, if
the thing being pointed at is an atom, not
a cell, both routines are "no-operations."
In this particular implementation, numeric
values, although conceptually atoms, are
dynamically allocated from the same memary
space as cells, and are treated like
pointer cells by ADD_REF and DEL_REF,
except that no attempt is made to aperate
on their CAR and CDR’s.

The next step was to identify within the
interpreter each point at which a reference
was being created or destroyed, and invoke
the appropriate ADD_REF or DEL._REF
function. This proved tao be about as
difficult as the original operation of
making sure all intermediate results were
"known" to the mark and sweep collector,
except that errors were much easier to
detect with the reference counter system,
which immediately reallocates a cell that
is erroneously released, rather than
reallocating it at a much later time.
During this process it became convenient to
define two non-primitive routines to
perform internal CAR and CDR operations in
such a way as to delete the reference to
their argument while adding a reference to
the result.

After modification the interpreter was
operated with a small-to-medium sized
expert system which uses most of the LISF
operations. This verified correctness of
the concept and implementation, and
provided some performance information which
is presented in a following section.

COUNT-EXPANSION STRATEGY

The count-expansion strategy uses small
reference counters as does the copy-—
modified strategy, but when more references
are desired than the small counter can
represent, the counter is expanded. This
is accomplished by obtaining a new cell
from the free list, and storing a link to
the new cell in the old cell. There is
space for two painters in each cell, one of
which in the first cell is used to store
the link. Two of the remaining pointers
are used to contain the CAR and CDR values
of the original cell, and the third is used
to contain an expanded reference counter.
These may be allocated in any way desired,
but placing the CAR and CDR in the new cell

and retaining the reference count in the
first cell is most compatible with
alternate cell formats, such as using a
cell to store numeric atoms instead of
pointers. This scheme is diagrammed in
Figure 2.

Advantages of Count-Expansion

The original cell remains the principal
point of reference, retaining the same
absolute address for all references derived
from the particular piece of list topology
in question. Thus list splicing operations
may be used (by the brave or the foolish).
It is possible a large number of cells
might have to be expanded, but the
expansion is limited to one additional
cell. In a copy-modified strategy a singleg
cell might be copied many times.

Drawbacks of Count—Expansion

All the list manipulation logic in the list
processor must now deal with two
significantly different cell formats, and
the overhead of the logic to interrogate
and compensate for this fact. All list
operations involving the cell will require
extra memary cycles to access the remotely
located second part.

Because of the additional complexities,
count-expansion has not been implemented by
this author. The performance statistics
reported in a following section for the
copy-modified strateay should apply

new refepence

\

existing ™. original cell
refepences ", [0l

=20t | T

new cell

THIS §

directly to the count-expansion strategy
also,

CONSIDERATIONS FOR HARDWARE IMPLEMENTATION

Greenblatt, et. al. (4), describe a
hardware architecture for a LISP machine
based on a general purpose 32 bit micro-
programmable processor. Either copy-
modified or count-expansion garbage
collection appears compatible with most of
the basic design of this machine.

In a pointer word, bits are allocated as
follows:

24 bit address
5 bit data type
2 bit CDR coding
1 bit not mentioned (probably
garbage collection flag)

A two valued reference counter can be
obtained by merely re-using the no—-longer
needed garbage collection bit. Larger
reference counters would require
sacrificing bits from one of the other
fields, possibly data type, or the storing
of the counter in some other place, such as
a special array of counters. Data types
would refer to the item referenced in the
address field, but the reference counter
would relate to the specific cell in which
it was contained. Every pointer to an
entity would thus contain information about
the type of that entity, but the reference
count would be attached to the entity

B LIST FRAGNENT

Figure 2, COUNT-EXPANDED LIST STRUCTURE AFTER OVERFLOW

84

itself. Primarily list cells and other
complex data items would have reference
counters. Atoms, of course, are permanent
and do not need counters. Numeric
constants could be treated as atoms, but it
is usually desirable to treat numbers
resulting from computation as dynamically
allocated entities, like lists. If such a
number requires a 32 bit format, it can be
assumed that its reference count is always
one, thus it will always have to be caopied
in a copy-modified strategy (which is
comparable to what conventional non-LISP
machines dao), and when its one reference is
deleted it can always be added back to the
free list. In a count-expansion strategy
it would always have to be expanded, which
would take some extra storage.

LISP Machine Modifications

LISP Machine, Inc. (35) produces a
commercial machine very similar to the one
described by Greenblatt. It supports user
re-definition of the microcode and it or a
similar machine could be conceptually re-
programmed to implement one of the garbage
collection strateqies described herein.
Unlike various mark and sweep strategies,
however, all the microcode which
manipulated lists with the possibility of
adding or deleting references would have to
be examined and modified, just as it was in
the above-mentioned interpreter. Any
changes in basic data or control field
formats would also require such global
change. Fresumably some logic devoted to
making sure the garbage collector was aware
of all in use cells (usually through
special stack entries) could be eliminated,

along with the mark and sweep collector
itself.

Further steps to increase efficiency would
require caches of some sort to reduce the
overhead of counter increment and
decrement, and could not likely he
implemented via microcode changes alone.
Cohen (3) points out that in LISP most
cells are only temporarily needed, and
quickly become garhage which could be added
back to the free list. This indicates
performance could be greatly enhanced by a
cache with some sort of delay feature,
whereby main memory is not updated on each
write operation, thus allowing cells to
make a complete loop from the free list,
into use, and back onto the free list with
only an initial and final main memory
access. In fact, using a free list with a
last-in-first-out nature would result in a
pool of free cells being maintained in the
cache and being utilized over and over with
often no main memory accesses for a usage
cycle. Various cache architectures would
need to be studied for effectiveness. It
might prove more reasonable to use a small,
purely associative cache in which only
least recently used cells were written to
memory (to make space for new ones), rather

85

than more traditional block-mapped
architectures.

PERFORMANCE ISSUES

The most critical issues affecting the
feasibility of either of the collection
strategies presented here are the relative
fraction of references which result in
overflows (and thus the time spent in
exceptional processing, as opposed to the
routine of increment & decrement), and the
relative fraction of memory which becomes
devoted to storing copied or expanded
cells. These must be evaluated as a
function of counter size. Whatever optimum
value is found can then be compared with
the time spent performing mark and sweep
collection and with the extra storage which
such a strategy must provide in order to
operate efficiently.

Results of Interpreter Measurements

The above mentioned interpreter was easily
equipped to gather the statistics presented
in Table 1. The application from which
these data were gathered was the same
expert system which was used to validate
modifications to the interpreter, and so
the data should be considered an

indication needing further support, not an
exhaustive sampling of many applications.
It is evident from these data that a
relatively small counter size of only two
bits would result in less than 10% of the
system resources being devoted to garbage
collection. Even one bit counters would be
feasible. This can be compared with
results presented by Hickey and Cohen (&)
which indicate that about 75% of the system
processing power is needed by on—-the—fly

mark and sweep strategies to guarantee that

no cycles will occur in which the list
processor must wait on the collector. The
performance of reference count strategies
is significantly obtained without resorting
to the complexity of parallel processors
performing the collection. This advantage
in simplicity could be very important when
imbedding symbolic processing in small
microprocessors.

Characterization of Frequent Overflows

In examining the raw data from this
interpreter, it became apparent that
perhaps only 1% or so of the cells were
accounting for B80% to 90% of the overflows.
Logic was added to print out the nature o+
such cells, and they turned out to be,
without exception, numerical constants.

The two greatest offenders were zero and
one. These were part of the original
program, and as the program executed
through a few hundred thousand steps, they
became incorporated into list structures at
several hundred different places. In
retrospect, this seems like reasonable
behaviaor, probably typical of a wide

Table 1. OVERFLOW OUERHEAD STATISTICS

ADD_REF' s
CELLS

7 of References which Generated Ovenflow

% of Cells which are Copies

Af tep
Proaran
Loa

3369
1

8.6/
5,64

9.9/
6.9/

174189 3.4y
17953 5,7

Af tep
Progpam
Execution

2,87

1.9 8.0 19.24

Maximuw Refevence _ . 15
Counter Value |

variety of programs, and does not seem to
be particularly inefficient.

Memory Size Issues

An important aspect of any reference
counter collection scheme is that its
performance depends only on the rate at
which the list processor demands cells and
creates garbage. Mark and sweep
strategies, on the other hand, depend
heavily on the size of the space being
scavenged, growing less efficient as the
space becomes larger. This has resulted in
various complex partitioning schemes as
described by Greenblatt (4), aspects of
which must be taken into account by the
applications designer.

A second important aspect of reference
counter schemes is that by being able to
identify and re-utilize garbage
immediately, they can be designed to keep
the memory space occupied by a program more
compact. This is critical in virtual
memory systems where locality of reference
can make or break system performance.

SUMMARY AND CONCLUSION

Methods have been presented for s0lving the
problems of counter size, counter overflow,

‘86

7 3 1

and counter increment/decrement overhead
for reference count garbage collection,
without ever resorting to mark and sweeap
coallection. The remaining difficulty,
collection of cyclic structures, is
believed not to be of importance to most
practical applications. Comparison of
performance characteristics with mark and
sweep collection indicates that for most
applications the strategies based on
reference counters will be both simpler and
more efficient. For applications requiring
real—-time or conversational interaction

the advantages are even Qreater, with
reference counter systems incurring only
about a fraction of the penalty of mark and
sweep systems when guarenteeing the list
processor will not have to wait on the
collector.

Further work is need to model various
implementation strategies against a broad
spectrum of applications. AQfter selecting
optimum or near optimum parameters, such as
counter size and cache organization, the
details of a hardware implementation could
be effectively designed and implemented.
The availahility of a family of LISF
processors based on such a strategy would
greatly enhance the applicability of
artificial intelligence for applications as
diverse as weapons control, space station

monitoring, appliance control, and
conversational interface.

REFERENCES

{1 Rich, Elaine, Artificial Intelligence,
McGraw—-Hill, New York, NY 1983,

(2) Winston, F. H. and Horn, B. K. [
L.ISP, Addison-Wesley, 1981.

(3) Cohen, Jacques, "Garbage Collection of
Linked Data Structures,” ACM
Computing Surveys, Vol. 13, No. 2,
Association for Computing Machinery,
Sept. 1981, pp. 341-367.

(4) Greenblatt, et. al., "“The LISF
Machine,” Artificial Intelligence: an
MIT Ferspe » Vol. 2, The MIT
Press, Cambridge, MA, 1979, pp. 345-
374.

() The LMI Lambda; Technical Summary,
LISF Machine, Inc., Los Angeles, CA,
1984,

(&)

Hickey, Tim and Cohen, Jacques,
"Performance Analysis of On—-the-Fly

Garbage Collection," Communications
ACM, Vol. 27, No. 11,

ation for Computing Machinery,

Nov. 1984, pp. 1143-1154,

