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An analysis of the appearance of time and motion in an accelerated frame gives the result 

expected by Einstein and others of an apparent mass increase in proportion to potential.  This 

leads to a set of transformations we call the laws of inertia.  The resulting inertia is isotropic.  One 

can infer that these results apply to a gravitational field due to the Einstein Equivalence Principle.  

This removes an objection to Mach’s Principle based on possible anisotropy.  Further exploring 

the gravitational analogy reveals non-physical properties the analogy must have for an 

acceleration to be “equivalent” to gravity for weak field effects, such as precession and light 

bending.  The new formulation, Modified Equivalence, clarifies the literature about what is or is 

not derivable from equivalence by showing exactly where the deficiency lies in ordinary 

equivalence, without resorting to Riemannian mathematics.   

 

Une analyse de l'apparence du temps et du mouvement au sein d'un cadre accéléré donne lieu au 

résultat prédit notamment par Einstein, à savoir une augmentation de masse par rapport au 

potentiel.  Ce phénomène entraîne une série de transformations que nous désignons sous le terme 

de principes de l'inertie.  L'inertie qui en résulte est isotrope.  Nous pouvons déduire que ces 

résultats s'appliquent à un champ gravitationnel en raison du Principe d'Équivalence d'Einstein.  

Cette observation supprime une objection au Principe de Mach découlant d'une anisotropie 

éventuelle.  Une poursuite de l'analogie gravitationnelle révèle des propriétés non physiques que 

doit posséder l'analogie pour que l'accélération soit « équivalente » à la gravité dans le cadre de 

l'effet des champs faibles, tels que la précession et la déviation de la lumière.  La nouvelle 

formulation, l'Équivalence modifiée, apporte des clarifications dans le corpus portant sur les 

éléments qui sont dérivables ou non de l'équivalence, en démontrant précisément où se situent les 

déficiences dans l'équivalence ordinaire, sans nécessiter de recours aux mathématiques de 

Riemann.   
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I. SCOPE OF EQUIVALENCE 

The Principle of Equivalence is due primarily to 

Einstein but rooted in the observations of Galileo, 

Eötvös, Dicke and others that all objects fall at the 

same rate.  The Weak Equivalence Principle (WEP) 

reasons that therefore gravity must act equally on all 

forms of inertia (or energy).  The Einstein Equivalence 

Principle (EEP), used as a guide in the formulation of 

General Relativity Theory (GRT), holds that in the 

neighborhood of a point in space all physical 

experiments will give the same result whether 

conducted in an accelerated frame of reference, or 

supported (as on a planetary surface) in a gravitational 

field, and that free fall is an inertial reference frame.  

The limitation of equivalence to the neighborhood of a 

point in space attempts to deal with the problem of 

convergence of gravitational force on an apparent point 

at the center of the source mass.  Force will be along 

parallel lines in an accelerated frame of reference.   

 

Einstein published a famous analysis in 1911 [1] in 

which he showed how equivalence explains light 

bending, but fortunately the prediction was never 

tested, as it gave only half the correct value.  The full 

theory of general relativity gives the correct value.  

Various investigators have attempted to extend an 

equivalence-based analysis to derive all relativistic 

effects, including light bending and orbital precession.  

Lenz and Schiff in 1960 developed a derivation of the 

Schwarzschild metric based on equivalence, special 
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relativity, and Newtonian gravity [2], in an effort to 

demonstrate limitations of experimental tests of 

general relativity.  This would appear to give not only 

light bending but also planetary precession.  However, 

two rebuttals soon appeared [3] [4] showing that the 

Schwarzschild metric was not possible from such 

assumptions, which we are inclined to accept based on 

our own analysis.  In the current paper, we will use 

equivalence to analyze the question of the isotropy of 

inertia in a gravitational field, and determine 

conditions under which equivalence can explain more 

than in Einstein’s 1911 paper, but not the 

Schwarzschild metric. 

 

II. INERTIA AND GRAVITATION 

Gottfried Wilhelm von Leibniz and Bishop George 

Berkeley took issue with Newton’s idea of absolute 

space and time.  Ernst Mach later elaborated these 

objections, saying that motion was only definable 

relative to other matter, and that water would crawl up 

the sides of a bucket if the universe rotated around it 

[5].  While Mach did not quantify this theory further, 

Einstein did in a 1912 paper [6] relating inertia to 

gravitational potential energy divided by c2.  In 1917, 

convinced that GRT incorporated Mach’s Principle, 

Einstein said, “In a consistent theory of relativity there 

can be no inertia relatively to space, but only an inertia 

of masses relatively to one another.  If, therefore, I 

remove a mass to a sufficient distance from all other 

masses in the universe, its inertia must fall to zero 

[7].”1  Lense and Thirring’s analysis of rotational 

frame-dragging was heralded as a Machian effect in 

1918-21 [8].  Einstein’s 1921 book defends his 

position in detail [9], but by 1949 he has reversed 

himself and laments, “…the attempt at such a solution 

does not fit into a consistent field theory… [7],” 

presumably referring to a boundary condition problem 

which was by then known.  

 

In 1953 Sciama argued that the GRT formulation was 

inadequate, and derived inertia from Maxwell-like 

gravitational equations [10], which today are called 

                                                      
1 This quote from Einstein is used only to show his 

continuing interest in the Machian relativity of inertia.  

Presumably he refers to the inertia of the object 

relative to the now-distant mass of the rest of the 

universe.  Later in the paper we show changes in 

inertia are only detectable relative to non-self objects. 

linearized GRT [11].  Sciama did not produce a full 

GRT formulation.  In 1957 Davidson answered Sciama, 

showing that the relations Sciama derived are also 

contained in GRT for reasonable boundary conditions 

[12].  In 1962 Brans argued the only way GRT can 

influence matter is through the metric, which can be 

transformed away for an arbitrarily small laboratory 

[13].  Brans and Dicke then put forward their own 

theory of gravity with a more explicit formulation of 

inertia [14]. 

 

The possibility that Machian inertia might be 

anisotropic was suggested by Cocconi and Salpeter in 

1958 [15].  This  was not a derivation, only a 

suggestion of the possibility that acceleration relative to 

local masses (such as the sun or the Milky Way) might 

produce an inertial reaction which was dependent on 

the angle between the acceleration and a radial vector 

from a test particle to the mass center.  In 1960 Cocconi 

and Salpeter proposed that the Mössbauer effect 

provided a sufficiently sensitive mechanism for testing 

this hypothesis [16].  Results of several experiments are 

summarized by Hughes [17].  An experiment by Drever 

[18] limits the possible asymmetry to m / m  5x10-23. 

 

The interpretations of these results are summarized by 

Horák [19], and vary widely, with Dicke and Epstein 

interpreting them as supporting Mach’s Principle, 

Weber interpreting them as providing “no support,” and 

others concluding the interpretation is still an open 

question.  Cocconi and Salpeter themselves, as well as 

Hughes, consider anisotropy of inertia as a possibility 

only, not an inevitable consequence of Mach’s 

Principle.  Weber’s view, however, was taken up by 

other influential authors, for example Weinberg [20].  

Horák rebuts Weber’s view within the framework of 

GRT and concludes “the substantial identity of the 

physical meaning of the Mach principle and that of 

general relativity implies their simultaneous validity.”   

 

In 1979 MacKenzie gave an analysis of an accelerated 

cylinder of masses which induces a small g-field via 

frame dragging (gravitomagnetic) effects [21].  

MacKenzie finds a mass increase and other relativistic 

effects in proportion to potential in the induced g-field, 

itself a weak second order effect.  The inertia that arises 

according to this argument is anisotropic. 

 

Continuing the discussion in 1992, Treder “reminds” 
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colleagues that “Mach’s relativity of inertia does not 

necessarily imply anisotropy of inertial masses [even] 

in an anisotropic universe… [22].”  There appear to be 

continuing differences of opinion on this subject. 

 

The plan of the current paper is to use an analysis of a 

pair of accelerating reference frames to show how a 

test particle is viewed by an observer who is at a 

different height.  Effects are first order, and will 

significantly dwarf second order effects.  This analysis 

will suggest an answer to the question of isotropy or 

anisotropy of locally induced inertia.  By the Einstein 

Equivalence Principle we can then infer characteristics 

of the locally induced component of inertia from 

nearby masses (e.g. the sun or Milky Way).  In the 

process, the scope and effectiveness of equivalence as 

a tool for understanding weak field trajectories will 

become better understood, via a special condition that 

will be introduced.  But we will not be able to 

construct a full model of GRT or a Schwarzschild 

metric. 

 

III. EQUIVALENCE AND ISOTROPY 

Consider an elevator, either in free space undergoing 

acceleration a, or suspended in a gravitational field of 

strength g = – a.  According to Einstein’s equivalence 

principle, locally it doesn’t matter which.  The height 

of the elevator is taken to be h, sufficiently small that 

the equivalence principle is valid, and also sufficiently 

small that the change in velocity of the elevator over 

the distance h is much less than the speed of light c.  

Test particles A and B cross the elevator with identical 

velocity, vx, measured locally, bound in the elevator’s 

frame of reference (as in a track, for example).  A is at 

the top and B the bottom, so they are h apart along 

the direction of acceleration.  At identical intervals of 

horizontal distance, x, the test particles transmit a 

progress signal to one another, which may be 

interpreted as a clock, but also reflects exactly their 

velocity.  For each particle, the time between 

transmissions is tx = x / vx. 

 

The time of transit of signals ty from bottom to top, 

given the assumption that the change in the elevator’s 

velocity change over the interval is much less than c, is 

approximately ty = h/c.  The velocity attained by 

the top relative to the transmission point is vy = aty = 

ah/c.  The Doppler shift for all information 

transmitted at the speed of light from bottom to top is z 

= vy/c = ah/c2.  The observed frequency of arrival of 

progress signals from B at the top then is fB` = fB / 

(z+1).  We adopt the symbol  for z+1, and substitute z 

= ah/c2 as follows: 

 
21 /a h c     (1) 

 

Taking the reciprocal of the frequency shift as time 

dilation, we conclude that B’s progress intervals are 

seen at the top to be longer by the factor: 

 'x xt t     (2) 

Primed quantities are referenced to the top of the 

elevator.  Since the progress signals effectively 

measure velocity, then the velocity vx appears slowed: 

 ' /x xv v   (3) 

We make no assumptions about the magnitude of vx.  It 

may be anything, up to and including the velocity of 

light.  But since vy << c we have a simple 

correspondence between the observations at the top and 

bottom of the elevator.  An observer at the bottom will 

see events moving more quickly in the top’s frame, in 

the inverse of (2) and (3). 

 

We may think of viewing events through a Doppler 

shift, or time dilation, as like viewing a movie in slow 

motion.  The transforms we will develop are like 

writing equations of motion for the slow motion movie, 

which obey the laws of physics in the time scale of the 

movie.  Now we address the twin problems of mass and 

momentum.  Only one of them can be conserved in this 

situation.   
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Fig. 1 Apparent velocity due to Doppler shift  
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Figure 1 shows the previously described thought 

experiment, with velocities diagrammed from the point 

of view of the top.  Object A is on a frictionless track 

which may be lowered and raised.  The velocity of A 

will appear to vary with height due to the Doppler 

Effect.  Momentum is a vector and there appear to be 

no lateral forces acting which could account for a 

change in momentum.  But potential energy is varying 

with height in exactly the same proportion that A’s 

mass would have to vary in order to explain the 

velocity effect.  Therefore it seems reasonable to 

assume momentum is conserved, and mass, as 

remotely observed, is the quantity that varies.  This 

gives: 

 ' p p  (4) 

 'm m   (5) 

Of course, one might argue the mass is not really 

increased. This is an artifact of measurement through 

an unavoidable Doppler shift that applies to all 

information flowing between the bottom and top.  An 

observer at the top has a choice, either to manipulate 

measurements so as to restore the values seen by a 

local observer at the bottom and compute with those 

values.  Or the observer at the top can take 

measurements at face value in his local reference 

frame, in which case the mass increase must be 

accepted. 

 

The mass increase of (5) may be interpreted as arising 

from the potential ah, which in the gravitational field 

of a source mass M at radius R corresponds to GM/R.  

This in turn can be interpreted as the Machian inertia 

induced by the local potential field of M [6] [10] [12] 

[23] [24] [25].  This is the inertia that was thought 

possibly to be anisotropic [15] [16] [17] [18] [19] [20].  

Our derivation was, however, done using lateral 

momentum, perpendicular to the radius to any central 

mass M, and is based only on potential (by way of the 

Doppler shift), so it is likely to be isotropic, but we 

must show that (5) holds for arbitrary motion. 

 

Acceleration (or gravity) severely distorts vertically 

aligned motion components, and accelerated clocks do 

not work well.  Instead, clocks used to look for 

anisotropic effects in inertia, such as the Mössbauer 

effect, have been free falling in space, not accelerating.  

In an equivalence setup, there is no analog of an orbit 

in which an object free falls but does not change height.   

 

The best we can do is use an inertial free falling clock.  

This will have a velocity Doppler Effect, but if we 

design the device so that there is only one measurement 

point for progress signals, we can perform identical 

experiments with the clock in different orientations, 

and in the local inertial frame we will get identical 

results.  If the measurement point is initially co-moving 

with the bottom of the elevator at the start of the 

experiment, identical progress signals will be 

transmitted regardless of clock orientation.   

 
Fig 2 Free falling velocity clock 

 

Figure 2 shows a simple velocity clock (an object 

bouncing between two plates).  The progress signal 

originates only on one of the plates.  The orientation of 

this clock will not affect the measurement, so the mass 

m cannot depend on the direction of motion. 

 

Therefore, the appearance of inertia change with 

acceleration potential is isotropic.  If the Einstein 

Equivalence Principle is correct, we can apply these 

results to gravity by substituting the field of a mass M, 

at sufficient radius R that the size of the elevator does 

not become a factor, and we can approximate the 

acceleration in the elevator as 

a = – g = – GM/R2.  As a philosophical guide, which is 



5 

 

the way Einstein used his equivalence principle, this 

suggests that the apparent mass changes over larger 

intervals are also isotropic.  Thus we claim 

equivalence suggests that local inertia is isotropic. 

 

IV. LAWS OF INERTIA 

The reference frame transformations (2) through (5) 

imply additional transformations which will be needed 

for trajectory analysis.  Each of these will be 

discussed: 

 ' / F F  (6) 

 
2' / A A  (7) 

 'L L  (8) 

 ' /E E   (9) 

 

The author calls these the “laws of inertia” because 

they were discovered to be consequences of changes in 

inertia.  However, we have deduced them from 

equivalence, by way of time dilation, so they could 

just as well be called the laws of equivalence, or the 

laws of time, but as the former doesn’t connote very 

much, and the latter seems rather overreaching, the 

laws of inertia by comparison seems a useful name.   

 

These transformation laws are similar to the 

transformations of special relativity, with two notable 

exceptions.  First, the inverse transforms are not 

identical, they are opposite.  A lower observer sees 

higher observers blue shifted and time accelerated, 

where as in special relativity all objects in different 

states of motion are seen time dilated.  Second, 

without relativistic motion there is no length 

contraction (at least to first order), and without length 

contraction, part of the Lorentz time transformation is 

missing, the part which relates time to distance along 

the contracted axis of motion.  An observer at the top 

of the elevator sees clocks at the bottom of the elevator 

as synchronized.  Even clocks at other levels may be 

synchronized at some arbitrary moment of time by 

careful signaling and planning, and all observers will 

agree on the synchrony, but of course they will drift 

apart due to running at different rates.  By contrast, 

observers will never be able to agree on even a 

moment of synchrony between multiple points in 

relativistically moving reference frames.  The two sets 

of laws are so closely related that if one imagines a 

relativistic reference frame without length contraction 

(a hypothetical entity which the author calls a purely 

inertial frame (PIF), referring to inertia being the 

primary transformed quantity), the laws of inertia can 

be used to describe motion in that frame.  To get the 

observed local motion, simply apply the inverse 

transforms.  To get the relativistically observed motion, 

apply length contraction and the length-related 

component of time transformation.  We will not show 

this in detail.  The discussion is just to help understand 

that the laws of inertia are not entirely new, and how 

they fit with the reader’s experience. 

 

The force transformation (6) is perhaps the least 

obvious from experience.  To derive this transformation 

we will discretize force as follows.  Referring to the 

same elevator and test particles, let A be accelerated 

laterally by a series of differentially small momentum 

impulses that average to a certain force, F = max, where 

m is the mass of A and ax is a lateral acceleration.  Let 

an identical series of lateral momentum impulses be 

transferred from the top to bottom of the elevator by the 

method of Figure 1.  The rate of arrival will be blue 

shifted by , which is the inverse of (6) as expected.   

 

What about electromagnetic forces, and the 

conservation of charge?  For forces between particles at 

rest or in continuous motion with respect to each other, 

consider that electromagnetic forces are held to be 

momentum impulse forces arising from quantum field 

interactions.  For a pair of objects both immersed in a 

time dilation frame such as the bottom of the elevator, 

impulse rates for both of them would be viewed as 

lower by an observer higher in the frame, and thus the 

apparent force between them would conform to (6). 

 

For forces between particles at different points in an 

acceleration potential, such as the top and bottom of the 

elevator, while the distance between these points may 

be constant, the particles are both accelerated, and this 

will distort the field between them due to the Doppler 

effects.  However, to understand and address this we 

must first discuss the illusion of progressive lag and 

how this is handled, which is in the next section. 

 

The transform of acceleration seems to have been first 

noticed by G. Ascoli (unpublished by Ascoli, but 

discussed and attributed in Sard [26]).  It is easy to 

understand in terms of time dilation, since the units of 

acceleration have a t2 term in the denominator.   
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The identity transformation of length L in any 

direction is a consequence of the lack of dependence 

of our derivations on relativistic velocities, but is 

subject to interpretation for reasons which will be 

elaborated.  If an object is moving relativistically 

within the frame, the Lorentz transformation applies, 

and length contraction appears along its trajectory.  

Without relativistic motion, a co-moving inertial 

observer can be used to verify that lengths are the 

same between the top and bottom of the elevator.  If an 

object D is initially co-moving with the top and is 

released into free fall, its velocity when it passes the 

bottom is vd = (2ah)0.5.  The Lorentz factor for this 

velocity is 

 
2 2 2 1/21/ 1 / (1 2 / )dv c a h c       

 
21 /a h c       (10) 

This seems to be purely an effect of special relativity 

as it depends on the direction of motion of D, which 

may be deflected to move in any direction.  In orbital 

situations, such an object will be moving in a non-

radial direction. 

 

The transformation of energy is a consequence of the 

Doppler shift.  Photons transmitted from bottom to top 

undergo a frequency shift, which by the Planck-

Einstein equation, E = h f, gives one factor of  

reduction.  Consider a free falling object of mass m in 

the equivalence setup we have been using.  Let m have 

zero initial velocity when released at the top of the 

elevator.  The kinetic energy of m at the bottom after it 

falls h is mah, so the total energy can be written as  

E = mc2 + mah = mc2.  This is the local energy at 

the bottom.  If the object is then entirely converted to 

energy and transmitted from the bottom to the top, a 

factor of 1/ in energy is lost to the Doppler shift, 

giving back the original rest energy mc2.  Alternately 

one can find the energy which an observer at the top 

must imply by replacing m with m` and c with c` 

giving E`=m`c`2 = m(c/)2 mc2.  

 

If an object m is brought close to a mass M such that 

m’s inertia is noticeably increased, the energy 

transformation (9) exactly cancels that mass increase 

as far as retrievable energy is concerned, so energy is 

conserved.  In other words, the inertial increase is with 

respect to motion of m and M relative to each other.  

This is similar to the entrapment of an object in the 

event horizon of a black hole.  The object cannot be 

moved relative to the black hole, but the black hole can 

be moved.  The mass of the system (M and m) is the 

sum of the component masses, transformed to the frame 

of a distant observer.  This must also include the mass 

of any kinetic energy.  So we have MTOTAL = M + m` + 

mah = M + m/(1+ah) + ah.  Assuming ah << 1 

and using the appropriate approximations, this gives 

MTOTAL = M + m – ah + ah = M + m, so that as 

expected the locally relative mass increase of m does 

not show up in the total system mass. 

 

If m is lowered on a tether and the potential energy is 

extracted, then kinetic energy is not present at the 

bottom and the total system mass is reduced by mah, 

which becomes the binding energy [6], and must be 

added back if the object is to be retrieved.   

 

V. ANALOG TO GRAVITATION 

To draw conclusions about gravitation, a precise 

definition of the acceleration analog to gravitation is 

required.  A thought experiment with a tether reveals a 

specific and somewhat unexpected condition for 

acceleration-gravitation equivalence.  The condition 

will explain why previous attempts to produce features 

of the Schwarzschild metric have not been successful. 

 

In this section, we seek conditions of “equivalence” in 

which a constant acceleration produces the following 

analog to gravitation:  two objects separated by a 

differential height h will indefinitely remain separated 

by h according to both observers.  This corresponds to 

a top observer on a supported platform, for example, 

and a bottom observer on a surface below.  It will be 

shown that a non-physical mathematical abstraction of 

equivalence, which we will call Modified Equivalence, 

is the only way to satisfy this condition. 

 

Let an object m be lowered in an accelerated elevator 

on a tether.  By assumption, local observers at both top 

and bottom notice an acceleration a relative to freely 

falling objects.  If the top observer applies (7), he finds 

the acceleration at the bottom appears to be a/2.  The 

upper observer thus sees the bottom fall away, because 

its acceleration is too small by 2.  The apparent point 

of origination of signals received at the top gets 

progressively further behind, much as the way the 

apparent source of sound from an accelerating jet gets 
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further behind the actual position of the jet, as 

illustrated in Figure 3.  Consider what happens if the 

acceleration stops.  As previously transmitted signals 

come in, the “image” of the bottom gradually catches 

up with the actual bottom.  Clocks at the bottom and 

top will no longer be synchronized.  Consider an 

inertial reference frame co-moving with the elevator at 

some past time.  The elevator may now have gradually 

accumulated a relativistic velocity causing clock skew.   

 

AA

BB

hh

a

B2B2

B3B3
 

Fig. 3 Acceleration Doppler progressive lag effect 

 

Another factor that accumulates over time is 

contraction of the elevator, relative to some inertial 

observer co-moving with the elevator at some past 

time.  This corresponds to the accumulated clock 

skew. 

 

The situation of Figure 3 is obviously not what we see 

when looking at an object below us in a gravitational 

field.  We do not see objects at fixed heights appearing 

gradually to fall, nor do we see the distance to objects 

gradually shrinking over time, even over millennia.  

(A free object does of course fall, and a free falling 

observer does see lengths contract, but as discussed 

earlier, such an observer’s observations are dependent 

on trajectory.) 

 

The resolution which the author suggests is that in 

order to apply a finding from an equivalence setup to a 

gravitational field where the distance h is unchanging 

with time, we must assume that observers at the bottom 

of the elevator experience the acceleration which would 

be required for an observer at the top to “see” them at a 

constant distance.  This means that an observer –h 

below a top observer who sees a gravitational 

acceleration g` would, to satisfy the acceleration 

transform (7), have to experience a gravitational 

acceleration g of 

 
2'g g   (11) 

 

Such an acceleration implies that object B experiences 

a gravitational force F=mg2.  Using the force 

transform, the force at the top of a tether is then found 

to be 

 ` /F F mg     (12) 

 

Therefore we see that under the conditions for which 

equivalence may reasonably be said to correspond to a 

gravitational field (forcing the Doppler illusion to 

coincide with observations in a gravitational field), a 

mass on a tether does indeed feel heavier.  This result 

will directly enable the derivation of trajectories for 

planetary precession in weak fields.  One interesting 

question it raises is, what is the actual potential energy 

if a larger than Newtonian force is involved?  That 

question is beyond the scope of this paper. 

 

Any suggested condition on so long established a 

concept as equivalence needs careful explanation and 

justification.  Consider two alternate views of what this 

means. 

 

First, the “memory” effect of acceleration will be 

clarified by discretizing acceleration, similar to the way 

force was discretized earlier.  At any moment in time, 

consider the view of an inertial observer co-moving 

with the top of the elevator.  Let acceleration proceed in 

incremental velocity steps (acceleration impulses) at 

the beginning of each t interval, followed by coasting, 

such that the average acceleration remains the same as 

before being discretized. 

 

There are many possibilities for timing of the impulses.  

Consider three cases: pull, push and sync.  We may 

imagine rockets attached to the top and bottom of the 

elevator which produce the impulses.  The elevator 

does not need to have a physical structure connecting 

the top and bottom. 
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The “sync” case we will define as based on 

synchronized clocks during the coast phase, so that the 

impulses at top and bottom come at the same time in a 

currently co-moving inertial frame.  An observer at the 

top will not see the bottom begin to move until a time 

interval h/c later than its own impulse.  During this 

time, the bottom seems to fall behind (the gap widens).  

From the point of view of the bottom, the top falls 

behind (i.e. the gap closes).  This amount of change in 

view persists until the next round of synchronized 

impulses, at which time the same thing happens again, 

adding to the distortion of views. 

 

In the “push” case the acceleration of the top is 

delayed until acceleration of the bottom is observed.  

In this case the bottom does not appear to lag.  It 

appears to maintain constant distance in the 

accelerated view from the top.  It appears to close the 

gap in the co-moving inertial view.  The gap widens at 

a double rate in the view from the bottom.  There is no 

Doppler shift or electric field distortion in the top’s 

view.   

 

In the “pull” view everything is reversed, with the 

bottom waiting for a signal from the top before 

accelerating. 

 

None of these corresponds to any view in a 

gravitational field, in which objects at fixed heights do 

not appear to recede or approach each other even over 

eons of time, and electromagnetic fields are distorted 

only insofar as time dilation corresponds to Doppler 

shift, but the static forces from charges are not 

distorted, and charges do not appear to radiate. 

 

Note that we have only hypothesized a differentially 

small elevator, in both height and width, in order to 

notice all these effects.  We will show in the next 

section that they “make a difference” in a differentially 

small frame, and are able to explain weak field effects 

when choices are made that coincide with the 

observation that in a gravitational field time is dilated 

but the progressive illusion of a widening gap does not 

occur.  That condition is exactly that cross-frame 

measurements of local physical parameters transform 

as we have defined them, and the field acceleration 

remains constant in the reference frame of any one 

observer (or in the case of a gravitational field, 

conforms to Newtonian acceleration in the view of any 

one observer). 

 

That condition leads to the second view of what this 

means, which is that an observer at the top of the 

elevator sees objects fall at a constant rate.  Though 

local events at lower heights slow down due to time 

dilation, the acceleration of falling objects does not.  It 

has aspects of push, pull and sync equivalence, but does 

not seem to correspond to any physical setup.  It is 

inspired by equivalence, with a special condition on 

falling acceleration, which for purposes of this paper 

will be referred to as a modified acceleration 

equivalence principle, or Modified Equivalence.   

 

In the next two sections, we show this non-physical 

version of equivalence is indeed “equivalent” to weak 

field gravity, which implies that no physical version of 

equivalence can be.  This is in agreement with Sacks 

and Ball [3], and Rindler [4].  Quoting Sacks and Ball 

with regard to derivations of the Schwarzschild metric 

from equivalence: “In all these derivations an answer of 

the correct form is arrived at through a combination of 

invalid physical interpretations and coincidences.”  Our 

present work aims at an improved understanding of 

equivalence by replacing “invalid interpretations and 

coincidences” with a single carefully reasoned 

deviation, based on simple observations (time dilation 

with the lack of a Doppler falling-away illusion in 

gravitational fields).  In turn, the work aims at 

determining which aspects of equivalence may be taken 

with some degree of confidence to apply in 

gravitational fields, with specific interest in inertia. 

 

VI. TRAJECTORY 

Now we turn our attention to what kinds of trajectories 

can, and cannot, be inferred from Modified 

Equivalence.  This will help confirm the role of 

isotropic inertia in relativistic effects.  We will show 

that equivalence has enforced a set of transformations 

so that a change in inertia, or relative potential, does 

not in itself alter trajectory, but only time.  This will 

guarantee that all clocks, no matter the mechanism, 

slow at the same rate, and that the shape of all 

trajectories is the same, although their timing is 

modified.   

 

Consider a particle at coordinate position X and 

describe its motion according to a local observer, and a 
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remote observer who uses a  transformation factor 

and whose measurements are noted with primes.  For 

convenience we assume the coordinate origin and axes 

are superimposed such that X`=X.  The equations of 

motion for the particle in its own frame are 

 
2

2

dt

dt

 

 

v v A

X X v
 

The subscript “2” indicates the new position, not a 

selection of coordinates.  In the remote observer’s 

frame we have 

 

2

2

2 2

2

2 2

` ` ` / ( / ) ( )

` ( ) / /

` ` ` ( / ) ( )

`

dt d t

dt

dt d t

dt

      

     

     

   

v v A v A

v v A v

X X v X v

X X v X

 

Therefore the position coordinates in the trajectory 

will not be modified by the transforms.  (If length 

contraction and the associated time displacement are 

added, these transformations can be applied to special 

relativity and are sufficient to explain the “fly-by 

principle,” i.e. that a relativistic test particle passing 

through a solar system does not change the planetary 

orbits.) 

 

If a force or acceleration does not transform according 

to the laws of inertia as we have specified, then its 

orbit will deviate from the shape of the expected 

Newtonian orbit.  When the equivalence setup is 

carried over to a gravitational situation, by assumption 

we do not transform the gravitational acceleration.  An 

observer who sees acceleration a at his own height, 

sees a for objects at other heights as well.  The 

comparable statement for a field about a mass M is to 

say that an observer who sees a = GM/R2 at his own 

height (R), sees this relation valid at all radii.   We will 

examine the effect this has on orbits. 

 

For a comparison baseline of gravitational effects the 

Schwarzschild metric will be used, which is known to 

give a correct result for planetary orbits in the solar 

system.  Taking the form given by Brown [27]: 

 
2 2 2 2/ / ( 3 )d r d m r r m      (13) 

and re-writing using our notation and units, we have 

 

2 2 2 2

2 2 2

/ ( / )( 3 / )

/ ( / )(1 3 / )

a GM R v R R GM c

a GM R v R GM Rc

   

    
 

For 3GM/Rc2 << 1 we can use the small x 

approximation,  1  x  1/(1 + x), thus: 

 
2 2 2/ ( / ) / (1 3 / )a GM R v R GM Rc     (14) 

Since (14) is in the frame of the object, which is free 

falling, a = 0.  What we have left is the balance of 

gravitational acceleration and centripetal acceleration.  

The Newtonian centripetal acceleration is reduced by 

(1+3GM/Rc2) which can be factored, ignoring high 

order terms, as (1+GM/Rc2)3  3, where  = 

(1+GM/Rc2).      We can rewrite (14) as  

 
2 2 3/ ( / ) /GM R v R   (15) 

Whenever equations of orbital motion in the frame of 

the orbiting object can be reduced to this form, the 

observed value of planetary precession will be 

obtained. 

 

We can derive a relation between the gravitational 

relativistic factor for weak fields,  (for GM/Rc2<<1 

this is equivalent to the Schwarzschild metric’s time 

dilation factor (1–2GM/Rc2)-0.5), and the lateral velocity 

Lorentz factor  = 1/(1–v2/c2)0.5.  For circular orbits, 

tangential velocity is given by: 

 /v GM R  (16) 

This is a good approximation to average velocity for 

near circular planetary ellipses if R is taken as the semi 

major axis.  Substituting for v in the Lorentz factor 

formula and using the usual approximations for 

operations on 1x for x<<1 we have: 

 
2 0.5 0.51/ (1 / )GM Rc      (17) 

The total relativistic transformation factor for an 

orbiting mass will then be 
1.5   . 

 

Figure 4 shows how an accelerated frame of differential 

width x can be applied to an orbit.  For simplicity, a 

circular orbit is assumed, which allows the orbiting 

object to enter and leave local accelerated frames 

conveniently at the same height R. In the limit as x → 

0 an accurate representation will be obtained. 
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
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Fig. 4 Orbit represented with accelerated frames 

 

Setting the radial displacement due to gravity Rg 

equal to the radial displacement outward Rv due to 

inertial continuation of v gives the expected result for 

balanced gravitational and centripetal force, g = 

GM/R2 = v2/R.  This equation has been derived so far 

without regard to relativistic factors.  Accounting for 

m’s relativistic motion, notice that centripetal 

acceleration v2/R doesn’t change.  A new x is marked 

using m’s coordinates, leaving the diagram of the 

accelerated frame unchanged.  The number of x’s 

that m finds in an orbit is not a factor since neither R 

nor v changes.  However, the constant gravitational 

acceleration will be perceived through m’s time 

dilation and must be transformed by the inverse of (7) 

giving: 

 

2 2 2

2 2 3

( / )( ) /

/ ( / ) /

GM R v v R

GM R v R

 

  
 (18) 

This has exactly the same form as our benchmark (15).  

We conclude that any law of gravity that produces 

acceleration which satisfies the Weak Equivalence 

Principle, and time dilation according to the relation 

we have given, and is otherwise Newtonian, is 

sufficient to explain planetary orbits.  This does not, 

however, produce other aspects of the Schwarzschild 

metric, as we will see below.  In any event, the 

conclusions from Modified Equivalence only show 

what trajectories are when Modified Equivalence holds.  

They do not constitute a theory of how gravity works.  

Currently all successful theories accomplish Modified 

Equivalence by treating gravity as geometry. 

 

VII. LIGHT BENDING 

The orbital analysis will not help with light.  Einstein 

already investigated that falling rate [1] and found only 

half the observed light bending [28] [29].  But time 

dilation, and the consequent velocity slowing, will have 

a steering effect separate from any falling effect.  In an 

acceleration setup, time dilation is only a Doppler 

illusion, and there is no actual bending of transverse 

light paths.  But in a gravitational field, time dilation 

and velocity slowing must be taken into account. 

 

Referring to Figure 5, consider two parts of a wave or 

particle separated by h and traveling horizontally at v 

and v2 respectively. 

v

v2

h

x=v t

x2=v2 t




v

vh

 
Fig. 5 Setup for speed gradient refraction 

 

After a horizontal interval x we have x = vt, and 

we assume x2 = v2t = (v/)t.    Two formerly 

vertical points on the object will be turned at an angle  

such that tan  ≈  ≈ (x – x2)/h = (v – v/)t/h.  

The velocity vector v will be turned by this same angle 

 so that a vertical velocity component vh is added, 

where tan  ≈  ≈ vh/v.  Equating the two expressions 

for  we have  ≈ vh/v = (v–v/)t/h.  We can 

rearrange this into an expression vh/t = v2(1 – 

1/)/h.  This value vh/t is aligned with the 

gravitational acceleration g.  Substituting for  using 

(1) and simplifying we have: 

 

2
2 2

2
(1 (1 / )) /hv v

v g h c h a
t c


     


 (19) 

For light, we have v = c and therefore vh/t = g.  
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Since vh/t is added to the explicit gravitational 

acceleration, g, as already noted, we have a total 

apparent acceleration of 2g.  Thus a double bending of 

light is derived for the gravitational analogy of 

equivalence, which agrees with observation.  This 

finding is not dependent on what we have defined as 

Modified Equivalence.  It is only dependent on our 

definition of how equivalence is used in a gravitational 

analogy: time dilation and velocity slowing are treated 

as real, not optical Doppler illusions. 

 

Note that considering a single local frame, the 

downward displacement of light exiting the frame is 

just as Einstein gave it in 1911.  What we have just 

seen is that the angle of the light at exit is not what 

would be expected from a simple dropping by that 

displacement.  The light is turned by an additional 

amount due to refraction in a speed gradient.  This is 

analogous to Huygens refraction, and results in 

deflections identical to Huygens refraction for light,2 

but the speed gradient may be used for objects that are 

not primarily described by wave motion.  In fact we 

have generalized our computation of the deflection due 

to the speed gradient to apply to any object moving 

with any speed across the elevator.  Even if the object 

is a point particle, the probability function of its future 

occurrences will be shaped by the speed gradient. 

 

Some investigators have been puzzled at the 

coincidence that Huygens refraction bending should be 

exactly equal to Newtonian bending. From the 

foregoing we conclude that whenever v = c this will be 

the case.  For v << c as in the case of planetary orbits, 

speed gradient refraction is a second order effect and 

usually can be ignored. 

 

VIII. EQUIVALENCE IN GENERAL 

RELATIVITY 

This section will compare conclusions from 

equivalence with results from the well known 

Schwarzschild metric.  The proper time T in the 

reference frame of an object at radius R relative to the 

                                                      
2 Huygens refraction can be formulated as entirely 

dependent on a ratio of velocities.  Velocity of light in 

a medium depends on interactions which in turn 

depend on the wavelength of the light, but velocity of 

light in a gravitational field does not depend on 

wavelength. 

time T` measured by an observer at infinity in this 

metric is: 

 

2 0.5

2 0.5

'(1 2 / )

' / (1 2 / )

T T GM Rc

T T GM Rc

 

  
 (20) 

For 2GM/Rc2 << 1, approximations allow (20) to be 

rearranged as follows: 

 
2` / (1 0.5(2 / ))T T GM Rc   

 
2` (1 / )T T GM Rc    (21) 

Expression (21) is exactly what we would expect from 

replacing acceleration potential ah with gravitational 

potential GM/R.  So in the approximation agreement is 

perfect. However, infinite time dilation occurs in (20) 

at the gravitational radius R = 2GM/c2.  In (21) infinite 

time dilation occurs only for R = 0.  Again we find that 

while the achievements of Modified Equivalence are 

impressive regarding weak field effects, it still does not 

yield the Schwarzschild metric, or a noticeable property 

of it, an event horizon. 

 

In an equivalence setup with a height h and 

acceleration a, relative velocities between the top and 

bottom greater than c are not achievable due to special 

relativity.  This is comparable to the situation in the 

Schwarzschild metric where in a distant observer’s 

frame a falling object never crosses the event horizon, 

but in the object’s frame it can.  However, in the 

equivalence setup, objects never become unreachable 

unless they are converted entirely to energy and 

achieve the speed of light. 

 

We now consider the question of local inertia effects in 

a gravitational field.  If a hypothetical idealized tether 

is attached from an observer to a falling object in the 

Schwarzschild metric, the observer would find the 

object slowing down, but an infinite force would be 

required to retrieve the object from the horizon.  Due to 

time dilation in the object’s frame, the observer would 

find that as the object approached the horizon, an extra 

force would be required to deflect the object in any 

direction, not just vertically.  The observer could 

reasonably interpret this requirement as due to 

increased mass of the object.     
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M
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Robserver

F`

 
Fig. 6 Force and mass in a gravitational field 

 

Consider the thought experiment of Figure 6, where an 

observer at a higher radius is equipped with a means to 

exert force laterally on a mass m at lower radius R.  

The laws of motion must hold for both observer and 

object.  For convenience, suppose impulses are exerted 

through the apparatus, which average over time to 

produce a force F.  Let  = T`/T.  The object m will 

perceive the rate of arrival of either left going or right 

going impulses to be  greater than the rate the 

observer sends them, owing to time dilation, and will 

perceive the effective force to be F` greater.  In the 

object’s frame, then, F=F`=ma, and a=F`/m, 

where a is lateral acceleration.  Applying inertial 

transformations we have the acceleration perceived by 

the observer: 

 
2' / '/

'

a a F m

m m

   

  
 (22) 

The observer would necessarily conclude the object’s 

inertial mass was increased in proportion to time 

dilation, wherever time dilation was observed in a 

metric.  Some readers may feel this is an 

interpretation, and will prefer other interpretations.  

The author would agree it is interpretive, but respond 

that the interpretation has a use in understanding 

Mach’s Principle, experimental results on the isotropy 

of local inertia, and the compatibility of these ideas 

with general relativity. 

 

The situation of test masses seeming to have inertia in 

otherwise an empty universe can possibly be 

understood by a limit process.  Consider a series of 

cosmologies varied according to some parameter in 

which the members of the series have less and less 

mass.  Since inertia is entirely relative, the inertia 

perceived in each by observers might be finite and 

non-zero, even as in the limit the total mass 

approached zero. 

 

IX. CONCLUSION 

First, there is a clear inference from equivalence that 

there is inertial mass increase in a gravitational field, 

and that this incremental increase is isotropic.  It is the 

purpose of the current paper to suggest that most kinds 

of theories containing time dilation will also predict 

such an increase, which GRT does under reasonable 

boundary conditions [12].  It is also a purpose of this 

paper to remove any dependence on lateral 

gravitomagnetic effects as in [21].  Since time dilation 

will correspond to mass increase, inertial changes will 

not be observable in the frame of the mass, but only to 

an observer who remains at a fixed potential.  

 

Second, Modified Equivalence and the laws of inertia 

can be used to explain orbital precession and light 

bending.  But in order to maintain an analogy to 

gravitational observations and thus explain orbital 

precession, a non-Newtonian gravity is required (i.e. 

modified acceleration), and in any case equivalence 

does not seem to explain strong field effects, such as an 

event horizon. 

 

In part because of the difficulties in making assertions 

based on Modified Equivalence, and in part because of 

second order effects such as those described by 

MacKenzie, we do not hold that the derivation of 

isotropy is a proof.  But in light of the extremely good 

success of equivalence both experimentally, and as an 

analytical tool for understanding first order effects, it 

seems that it makes a convincing suggestion that inertia 

is isotropic. 
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