
Rapid Implementation of Floating-point Computations
Using Phase-Coherent Dynamically Configurable

Pipelines

D. Rutishauser and R. Shuler
Avionic Systems Division, NASA Johnson Space Center

Houston, Texas, U.S.A.

Abstract - The Phase-Coherent Dynamically Configurable
Pipeline is a concept for the rapid implementation of pipelined
computational algorithms in configurable hardware. The
approach allows a high level of sharing of floating-point
resources among multiple computations. The concept features
a simple tag-based control scheme and a sparse-pipeline
allocation approach that enables all the stages of an
arithmetic pipeline to be processing simultaneously, with
multiple computations allocated to the same pipeline. Thus
the approach increases hardware resource utilization and
reduces power consumption. A framework is presented that
implements the concept. The current framework targets a
Field-Programmable Gate Array (FPGA), and simplifies the
coding phase of the algorithm and troubleshooting. The
framework is demonstrated on a technology currently under
development by NASA to provide automatic hazard detection
and avoidance for spacecraft landing systems.

Keywords: reconfigurable computing, floating-point,
automatic landing, pipeline

1 Introduction
 The implementation of computational algorithms is
governed by the requirements of the application. In meeting
these requirements the designer is also concerned with
development time and maintainability of the implementation
in the face of changes to the algorithm. Frequent algorithm
design changes may occur due to parallel development of the
algorithm and its realization.

For 3-dimensional, real-time, dynamic computational
applications such as found in space systems, requirements for
fast but low power processing often direct the search for
implementation options to custom configurable solutions.
Field-Programmable Gate Array (FPGA) implementations
have been shown to have up to a factor of ten less power
consumption compared to microprocessors [1].

This work investigates applying reconfigurable technologies
in support of the Automated Landing and Hazard Avoidance
Technology (ALHAT) project [2]. ALHAT is developing a

system for the automatic detection and avoidance of landing
hazards to spacecraft. The system is required to process large
amounts of terrain data from a Light Detection and Ranging
(LIDAR) sensor, within strict power constraints. Current
design environments for configurable hardware development
require substantial knowledge and expertise in hardware
design, and these are not traditional skills of algorithm
designers. Development times for custom hardware solutions
are also significantly higher than for a software
implementation. These two characteristics can cause projects
to prefer software and microprocessor-based solutions despite
the performance potential of configurable hardware [3].

The wide dynamic range associated with 3-dimensional
transformations in applications such as ALHAT is best suited
to floating-point arithmetic, a primary driver of the
complexity of configurable hardware design. Operators in
High Level Design Languages (HDLs) do not support
floating-point arithmetic, as found in most software
languages. Many efforts in the field of configurable
computing research focus on developing compilers and
frameworks to allow the design entry phase to have a similar
complexity level as traditional software design [4]. If a
framework with the capabilities required is not available,
design alternatives include systolic array implementation or
the development of a custom processor. In a systolic array,
the operations and data path are designed specifically for the
desired operation [5], [6]. This approach typically produces
the highest performance when compared to other options, but
the design is not flexible and changes to the high level
algorithm require new iterations of a potentially time-
consuming design effort. Often particular computations occur
only a small fraction of the time, but the systolic array
computational resources are wired for a specific computation.
HDL tools will take advantage of if-then-else topology to
recognize when in-line fixed point resources can be re-used,
but not module based floating-point resources. In addition,
real-time dynamic applications that interface with numerous
sensor systems are characterized by sparse data arrivals from
those systems. In this sparse data environment fully-pipelined
designs are not used to their full capability.

Custom soft processors provide more flexibility to algorithm
changes, and better accommodate re-use of resources, but
have a more substantial initial design effort. These processors
may use instructions tailored to the application in order to
perform competitively with general purpose Application
Specific Integrated Circuit (ASIC) processors [7], [8].

This work addresses the issues of development time for
floating-point arithmetic algorithms in configurable hardware
and ease of design modification with a framework that is
simple in comparison to a software-to-hardware compilation
system. The framework enables the definition of
dynamically-configured floating-point pipelines in HDL that
follow the flow of a software implementation more closely
than a systolic array, and is suitable for straightforward
translation from an executable software implementation that
can be used for verification of the design. The pipelines use a
data tag control scheme that avoids the complexity of
centralized pipeline control logic. The tag approach allows
dynamic configuration of pipeline components on a cycle by
cycle basis, and supports traditional fully pipelined data path
configurations, and several schemes for re-use of unallocated
cycles in sparsely filled pipeline configurations. Re-use of
unallocated cycles requires definite knowledge of where those
cycles are. In one method of particular interest, resource
constraints are addressed with a phase-coherent allocation
approach that overloads pipeline stages with multiple
operations, without the need for a scheduling algorithm or
complicated control logic.

This paper is organized as follows. Section 2 describes
research related to the approach described in this work,
Section 3 provides details of the dynamically configurable
phase-coherent pipeline design, the prototype test application
and experimental platform are discussed in Section 4, test
results are discussed in Section 5, and a description of plans
for future work is provided in Section 6.

2 Related Work
 Several examples exist in the literature of research
frameworks for the implementation of floating-point
computations on configurable hardware. In [9], the Trident
compiler for floating-point algorithms written in C is
described. The framework represents a substantial
development effort with all the functionality of a traditional
compiler: parsing, scheduling, and resource allocation. A
custom synthesizer that produces Very High Level Design
Language (VHDL) code and custom floating-point libraries
are also included. The phase-coherent pipeline approach does
not require the complex components found in the Trident
system, and is suitable for straightforward translation from C
code to VHDL defining the pipeline design.

The authors in [10] present a VHDL auto-coder to reduce the
development time of floating-point pipelines. A computation
is defined in a custom HDL-like pipeline description file, and

the code for a single pipeline implementing the computation is
produced. The approach requires a user to learn the author’s
custom HDL, and does not attempt to share resources. A C++
to VHDL generation framework is presented in [11], using an
object-oriented approach to VHDL auto-coding of arithmetic
operations. All computations are subclasses of a class
“operator”, and a method of the class “operator” produces
VHDL to implement a pipeline for the computation. Again a
user must learn the author’s syntax to define computations and
resource constraints are not addressed.

The resource sharing approach for phase-coherent pipelines
has some similarities to those developed for ASIC synthesis
algorithms. Hwang et al. [12] define the Data Introduction
Interval (DII) as the period in clock cycles between new data
arrivals at the input of a pipeline. A DII equal to one
represents fully pipelined operations. As discussed in Section
3, a DII greater than one is required for phase-coherent
resource sharing. Resource sharing approaches are described
in [13] and more recently for FPGAs in [14], where analysis
of a data flow graph of the computation and heuristics must be
used. The phase-coherent allocation approach is governed by
simple algebraic relationships and does not require complex
analysis or heuristics. Phase-coherent allocation does not
perform dynamic scheduling, and does not require any
scoreboarding method [15] or hardware to check for structural
or data hazards.

The association of tag values with data for control discussed
in Section 3 is similar to the tagged-token dataflow
computational model used in the Manchester Dataflow
Machine [16]. The local pipeline control in our method is
simpler, and does not require a matching unit, token queue, or
overflow unit. Tagged-token dataflow concepts have also
been used more recently in a configurable hardware
implementation for parallel execution of multiple loop
iterations [17].

A hand-coded systolic array and MATLAB®-based FPGA
implementation of the coordinate conversion stage of
processing LIDAR scan data for an automatic landing hazard
detection system is compared in [18]. Fixed-point arithmetic
is used. As previously discussed, a hand-coded systolic array
is not easily adaptable to algorithm design changes. The
MATLAB® solution is more easily developed and adapted,
but is most suitable to the processing of streaming data and
would not be an effective approach for other computations,
such as the hazard detection stage of the ALHAT algorithm.

3 Implementation Framework

In this section, the key elements of the phase-coherent,
dynamically configurable pipeline framework are described.
An example design is used to illustrate how the concepts work
together to provide the benefits of the approach.

3.1 Dynamically Configurable Pipeline
In the context of this work, a dynamically configurable
pipeline is a pipelined operation with an interconnect
configuration that is selectable during circuit operation. This
selectable input/output configuration between floating-point
operations, temporary storage, and input/output devices is
achieved with multiplexers on each port of the pipeline. As
stated in [19] the resource overhead of using multiplexers to
share computing resources is balanced by the reduction of
resources achieved. An additional concern, particularly for
reconfigurable computing, is development time [20].
Dynamically configurable pipelines provide a flexible data
path that is easier to modify than the fixed data path of a
systolic array, reducing overall development and maintenance
time.

3.2 Phase Tag Control
A dynamically configurable data path allows the inputs of an
operation to be consuming operands and results to be
produced for different computations potentially every clock
cycle. Further, operations such as floating-point arithmetic
typically require latencies greater than one to function at high
enough clock frequencies to meet the performance
requirements of applications. A control scheme is required to
route operands and results between pipelines and other
resources with the correct timing. In contrast to using a
scheduling algorithm and global control approach, a
distributed phase tag control method is used.

In the phase tag control method, a tag word is associated with
a set of inputs. The tag is assigned to a buffer that has the
same latency as the operation consuming the inputs. The
buffer is called a phase keeper. The output of the phase
keeper is tested to determine when the outputs of the operation
are valid for the inputs associated with the tag. One tag can be
used to control the input/output configuration of many
floating-point units, providing all units have the same latency.
For coding convenience, and to handle occasional units with
different latency, phase keepers were built in to all our floating
point units. If they are not used, the HDL tool flow removes
them automatically. The functional units output two phase tag
words. The ready tag (.r), usually with a latency of one clock
cycle, is used to signal that a pipeline is ready to accept data.
The completion tag (.p) indicates that an operation is finished.
The tags are used to control the inputs and outputs of a
pipeline. The content of the tag is used by an algorithm
developer to indicate which step of the computation is
associated with the operands or results. The phase tag control
approach supports both dense and sparsely allocated pipelines.
Examples of several design cases follow.

Figure 1 is a VHDL code sample of the dynamically
configurable pipeline and phase tag control approach. The
design is a fully pipelined implementation of the computation
A+B+C+D=sum. In this and the remaining code examples,

the signal AI(n) is an array of records that bundles data,
phase tag, and function (addition or subtraction) for the input
of adder unit n. AO(n) is an analogous signal for the output of
the unit. The signals PI(n) and PO(n) are arrays of phase tag
signals for the input and output, respectively, of phase keeper
unit n.

In this example, three adders are connected such that the first
unit (0) adds inputs A and B in parallel with the second unit
(1) that adds inputs C and D. The outputs of the first two
adders are wired to the inputs of the third adder (2), typical of
a systolic array. Instead of an explicit state machine to control
the output of the pipeline when the result of the computation is
valid, the phase tag appearing at the output of the third adder,
AO(2).p, is tested to determine when to store the result in
registered signal sum1.

Figure 1. Example of dynamically configurable phase-tag control design of
a fully pipelined implementation of the computation A+B+C+D=sum.

Figure 2. Example of dynamically configurable phase-tag control design of
a sparsely pipelined implementation of the computation A+B+C+D=sum.

…
ad0 : FADDP port map (clk, AI(0), AO(0)); --adder unit instantiations
ad1 : FADDP port map (clk, AI(1), AO(1));
ad2 : FADDP port map (clk, AI(2), AO(2));

process (clk) begin
if rising_edge(clk) then
…
AI(0) <= (ZERO, ZERO, NOPH, ADD);
AI(1) <= (ZERO, ZERO, NOPH, ADD);
AI(2) <= (ZERO, ZERO, NOPH, ADD);

if example1 then -- *** static full rate pipe with 3 adders ***
if data_strobe then -- initiate first two adds on data strobe

AI(0) <= (data_a, data_b, x"10", ADD);
AI(1) <= (data_c, data_d, x"10", ADD);

end if;
AI(2) <= (AO(0).o, AO(1).o, AO(0).p, ADD); -- intermediate sums always wired to final adder
if AO(2).p = x"10" then

sum1 <= AO(2).o; -- consume result when tag appears at output
end if;

end if;

…

end if;
d

…
process (clk) begin
if rising_edge(clk) then
…
AI(0) <= (ZERO, ZERO, NOPH, ADD);
AI(1) <= (ZERO, ZERO, NOPH, ADD);
AI(2) <= (ZERO, ZERO, NOPH, ADD);

if example2 then -- *** sparse pipe with only one adder and max rate ***
if data_strobe then

AI(0) <= (data_a, data_b, x"10", ADD); -- initiate first add on data strobe
end if;
if AO(0).r = x"10" then

AI(0) <= (data_c, data_d, x"11", ADD); -- initiate second add as soon as adder ready for input
end if;
if AO(0).p = x"10" then

sum_ab <= AO(0).o; -- save sum a+b for one clock cycle
end if;
if AO(0).p = x"11" then

AI(0) <= (sum_ab, AO(0).o, x"21", ADD); -- initiate final sum
end if;
if AO(0).p = x"21" then

sum2 <= AO(0).o; -- consume final sum
end if;

end if;
…
end if;
end process;

clock trigger logic adder pipe stage 1 adder pipe stage 2
1 DATA STROBE A1 & B1 to adder, tag #10
2 ready #10 tag C1 & D1 to adder, tag #11 process A1+B1
3 process C1+D1 process A1+B1
4 done #10 tag save A1+B1 process C1+D1
5 done #11 tag C+D, A+B to adder, tag #21
6 DATA STROBE A2 & B2 to adder, tag #10 process final sum
7 ready #10 tag C2 & D2 to adder, tag #11 process A2+B2 process final sum
8 done #21 tag store or forward result process C2+D2 process A2+B2

Figure 3. Configuration logic events, event triggers, and processes allocated
to adder unit pipeline stages for example of a sparsely pipelined
implementation of the computation A+B+C+D=sum.

Figure 2 shows the same computation implemented with only
a single adder unit, and assuming a DII that results in sparse
data arrival strobes compared to the length of the computation.
In this example, the ready tag is tested to determine when the
adder unit can accept a second input. This approach allows
the single adder to process the first two add operations as
quickly as possible without a conflict. Note that intermediate
results must be saved for the first addition because the result
cannot be consumed immediately. Intermediate results can be
stored up to the register resource limit of a particular part.

Using a two stage floating-point adder module, Figure 3 shows
the processes allocated to each adder stage, the configuration
logic for each clock cycle, and the event which triggers the
logic. Data point 1 is shown in bold. A second data point is
in gray. The minimum DII is 5 clock cycles, at which time the
previous point is finished with the adder input. The pipe is
still processing the previous point, but the correct actions will
be triggered by tags as they emerge from the pipe, as each
carries configuration “knowledge" of what should be done
with its associated data.

The phase tag scheme makes call and return logic, similar to
subroutine calls in software programs, possible in a
configurable hardware design. The re-used adder has
effectively become a call and return module. The tag
associated with data input indicates where the control logic
should resume when the adder is finished.

In addition to tags, an application can use mode variables to
control the configuration of the pipeline units. Mode variables
can allow use of fewer distinct tags. But the pipe has to be
completely empty before changing a mode variable. The
examples do not have mode variables, but they were used in
our prototype application.

Note that the tags are strobes. Initialization code gives them
the default value “NOPH” (no phase) unless they are
specifically assigned. If a group of functional units will be re-
used in a different module, then this initialization should be
contingent upon a mode variable. The functional units are set
up with tri-state input signals so that they can be shared
between modules. All that is required is to pass the input and
output signals for the functional units to the active module,
and enable initialization defaults only in the active module. If
the DII is not regular, then buffers should be used to ensure
that the minimum DII is met.

The example in Figure 2 uses intra-pipeline stage sharing to
process more than one computation stage on a single adder
unit. Effective resource sharing using this method can be a
complicated problem [14]. In the next section, the concept of
phase-coherent resource allocation is presented as a
straightforward means of accomplishing intra-pipeline sharing.
The allocation is constrained by simple relationships based on
the DII and minimum pipeline unit latency. These criteria are
not restrictive in real-time data processing systems that
interface with various sensor subsystems with different
latencies. In such systems, fully pipelined computations are
not generally required.

3.3 Phase-Coherent Resource Allocation
Phase-coherent pipeline allocation is a simple means to allow
pipeline stage sharing that enables different computations to
be allocated to the same functional units. The method requires
that results associated with a particular computational
sequence all emerge at a constant phase, that is, at a constant
multiple of a minimum unit latency L. If a unit does not
naturally have this latency, it must be padded with enough
empty pipeline stages. The multiplex stage is included in the
latency value. The DII should be equal to or greater than L1

.
The pipe can be said to have L independent phases. For
maximum re-use, successive data inputs are allocated to
different phases, until all phases are used, and only then are
conflicts possible. Under these conditions, a simple algebraic
relationship can be used to compute the period of time that
units can be re-used as follows.

Given a dynamically configurable pipelined functional unit
with a latency of L, each pipeline stage, Sp(n), can process a
datum of an independent computation. The reuse interval, IR

,
is defined as the number of clock cycles in which units can be
reused freely. This interval is computed as shown in (1).

LDIIIR ⋅= (1)

For maximum re-use, the interval can be applied separately to
each functional unit. The reuse interval may be applied
manually if hand-coding or incorporated into a translator.
Figure 4 shows a diagram of phase-coherent pipeline
allocation for the computation of the prior code examples. In
Figure 4, the DII=3, L=3, and IR=9. The dn

1 In real systems, the DII is never regular due to crossing clock domains
between the sensor systems and application. First-In First-Out (FIFO)
buffering can be used to force an average DII allowing the use of the phase-
coherent allocation.

variables
represent a set of input operands for the four add operations at
DII=n. As shown, the phase offsets for allocation are
implemented with a one or two cycle store of the incoming
data value at the input of the unit, as shown in clock cycles 3,
6, and 7. This is required because the input stage of the unit is
busy processing prior input data at these cycles. A latency L
phase keeper buffer tracks the allocation of available

computation phases and is used to control the assignment of
inputs to functional units. Also shown in Figure 4 is that by
cycle 8 when the third input data set is consumed, each
pipeline stage of the unit is processing data. Intermediate
results or temporary state variables, for example the
intermediate addition result A+B, do not benefit from the
phasing scheme and must either be used within the DII or
copied every DII clocks. Alternately they could be retained in
no-op pipe units.

Figure 4. Phase-coherent allocation of a single adder unit performing the
computation A+B+C+D=sum on three input data sets, d. The parameters of
the allocation are DII=3, L=3, and IR

The VHDL that implements the example of Figure 4 is shown
in Figure 5. As shown, the code implementing the phase-
coherent allocation method is straightforward and suitable for
generation by an auto-coder. The phase tags control each
stage of the computation as well as the cycle the adder unit is
free to accept new data. The dynamically configurable inputs
and outputs allow the same unit to process each computation
stage within the reuse interval.

=9, all in design clock cycles.

4 Prototype Application

Details of the algorithms supporting ALHAT for landing
hazard detection and avoidance are provided in [21]. The
general approach is to produce a regular grid of surface
elevation data in the coordinate frame of the landing site from
the LIDAR range samples. This elevation map is then
analyzed for surface slope and roughness and compared to
thresholds for these parameters to identify hazards. The
processing stages for LIDAR scan data are coordinate

conversion, re-gridding, and hazard detection. The first two
stages are currently demonstrated in the prototype design. The
computations implemented are summarized in this section.

Figure 5. Example of dynamically configurable phase-tag control design of
a phase-coherent pipeline implementation of the computation
A+B+C+D=sum.

4.1 Coordinate Conversion and Re-gridding
As described in [21], the coordinate conversion stage converts
each LIDAR range sample from scanner angle and range
coordinates to Cartesian coordinates. The computation is
shown in (2), where prx, pry, pr,z are components of the
converted point, tx, ty, t,z are the components of the sensor
position vector, px, py, p,z are the components of the range
sample, and q1, q2, q3, q4

 (2)

are components of a quaternion
vector for the coordinate rotation.

In the re-gridding stage of the computation, converted range
samples are projected into a grid cell of the elevation map,
and a bilinear interpolation scheme is used to update the
elevation of each vertex of the cell containing the projected
point. The elevation of the projected point weighted by the
distance from the point to the vertex is added to the current
weighted elevation for that vertex. Updates to the weighted
elevations and the weights for each vertex of the grid cell
containing a projected point are made using the computation

d1

cd1

c

c

c

c

c

d2

d1

d1

d2

d1

d2

d3

d1

d2

(d1 leaves pipe)

DII number

Clock cycle

Current operations
Processed Single adder pipeline stage allocation for

operation: A+B+C+D= sum

1

0

2

4

2

5

3

6

3

7

A+B

C+D,A+B

A+B

C+D

C+D,A+B

A+B+C+D,C+D

A+B+C+D,A+B

A+B

1

1

cd1

1

2

d1

2

3

cd2
d1

(d2 buffered one cycle)

(d3 buffered two cycles)

A+B+C+D,C+D,A+B

done,C+D,A+B,A+B

3

8

cd2

d3

d4

4

9

()
()
()

zyx

z

y

x

zyx t
pqqqq
pqqqq

pqqqq
pr ,,

1320

2310

0033

,,

5.0
2 +

















+

++
+−+

=

pk0 : PKEEP port map (clk, PI(0), PO(0)); --keeper unit instantiations
pk1 : PKEEP port map (clk, PI(1), PO(1));
…
process (clk) begin
if rising_edge(clk) then
PI(0) <= RDYPH; --constant indicating units ready for data
waiting <= FALSE;
…
AI(0) <= (ZERO, ZERO, NOPH, ADD);
AI(1) <= (ZERO, ZERO, NOPH, ADD);
AI(2) <= (ZERO, ZERO, NOPH, ADD);

if example3 then -- *** phase coherent pipe with DII*L re-use interval ***
PI(0) <= PO(0); -- default to a re-circulating phase tag
if data_strobe or waiting then
if PO(0) = RDYPH then -- wait for an available pipe phase

PI(0) <= x"10"; -- phase tag indicates 1st operation this re-use interval
AI(0) <= (data_a, data_b, x"10", ADD); -- send a and b to adder inputs

else
waiting <= TRUE; -- if pipe not available, come back and try again

end if;
end if;
if PO(0) = x"10" then -- when a+b completes, save and start next
PI(0) <= x"20";
AI(0) <= (data_c, data_d, x"20", ADD);
sum_ab <= AO(0).o; -- this state variable valid for L clocks or DII/L stages

end if;
if PO(0) = x"20" then -- when c+d completes, initiate final sum
PI(0) <= x"30";
AI(0) <= (sum_ab, AO(0).o, x"30", ADD);

end if;
if PO(0) = x"30" then -- when final sum completes ...
PI(0) <= RDYPH; -- vacate this phase
sum3 <= AO(0).o; -- consume result

end if;
end if; -- end example3

…
end if;
end process;

shown in (3). In (3) r and c are the row and column numbers
of the elevation map grid cell vertices, respectively.

(3)

4.2 Experimental Setup
The prototype design is tested on a Xilinx® Virtex™-5

FX130T FPGA hosted on an Alpha Data ADM-XRC-5TZ
mezzanine card. The Virtex™-5 family has a radiation
tolerant version, providing a path to space flight certification
of the design. The ADM-XRC-5TZ board has 48 megabytes
of SRAM across six banks, used for storing the elevation and
weight data for the elevation map. The prototype design uses
two SRAM interfaces that bundle two SRAM banks each.
The interfaces are designed to use one bank for even addresses
and one for odd. This approach makes it possible to run the
SRAM interface at twice the design rate to reduce memory
latency. Currently all interfaces operate at the same clock
frequency.

A Gigabit Ethernet interface is included for command and
data input and output. The prototype is designed to run at the
Ethernet clock speed of 125 MHz. To avoid buffering of the
input data, the prototype is designed with a DII of 12 clock
cycles. The 12 cycles is derived from each LIDAR sample
consisting of three single-precision floating-point components
of four bytes each.

With this prototype platform, the coordinate conversion and
re-gridding computations were implemented within a few days
using the phase-coherent pipeline approach. A full-rate
elevation map computation is verified (input LIDAR samples
are converted and re-gridded within 12 clock cycles) on this
prototype. These results show that the LIDAR data can be
processed in real time, or faster than real time.

5 Results
A comparison of resources used between various
implementations of the example computation presented in
Section 3 is shown in Table I. The resource values are
reported from the Xilinx® synthesis tools. The static

implementation is a direct wiring of the adders and data path
to realize the computation. The dynamically
configurable/phase tag control implementations are designed
as presented in Figures 1, 2, and 4. The phase-coherent
implementations are designs applying the phase-coherent
method to each case represented by Figures 1, 2, and 4. The
floating-point units are implemented using the Xilinx® CORE
Generator™ tool. DSP slice resources are used in the
multiplier units but not shown in Table I. Comparing the
Lookup Table (LUT) resources between the static and phase-
coherent implementations shows the phase-coherent pipeline
method yields an 85% reduction in resources. This means a
given FPGA can hold the equivalent of about seven times as
many source lines of floating point application equivalent
code using the phase-coherent method, as using traditional
data path methods. If a particular design does not approach
resource limits, phase-coherent reuse reduces design size
resulting in faster place and route.

TABLE I. RESOURCE COMPARISON BETWEEN DIFFERENT
IMPLEMENTATIONS OF COMPUTATION SUM=A+B+C+D.

Resource

Implementation- 3 Instantiations of sum=a+b+c+d

Static
Dynamically

Configurable/Phase
Tag Control

Phase-
Coherent

Slice
Registers

1198 753 342

LUTs 4768 1755 705

Slices 1653 694 309
LUT/FF
Pairs 4706 2010 834

Min.
Period 6.6ns 6.6ns 6.6ns

6 Conclusions
The method described in this work achieves substantial
improvements in the ease of both development and resource
reuse for pipelined computations on configurable hardware.
Using this HDL method, declarations and wiring are
simplified, and operand/result assignments are easily mixed
with other synchronous code. The HDL reads like and
corresponds closely to a software specified algorithm. This
allowed rapid design of the prototype, and should allow fast
response to algorithm changes. The HDL is suitable for
straightforward translation from an executable software
definition that can be used for algorithm verification. This
reduces the gap between the expertise required to design
configurable implementations and that of typical algorithm
designers.

The difficulty of resource reuse is reduced with a data tag
control scheme and phase-coherent allocation method that
replace the need for complex global scheduling, heuristics or
cycle dependent logic. Sparse data arrival in real-time is

 
 

() ()()
() ()()
() ()
() ()
() ()
() ()()
()
() () ;1,1

;1,1
;11,

;11,
;1,1

;1,1
;11,

;11,
;
;

z

z

z

z

pruvcrE
uvcrW

prvucrE
vucrW
prvucrE

vucrW
prvucrE

vucrW
ccv
rru

=+++
=+++
−=++
−=++
−=++
−=++
−−=+
−−=+

−=
−=

efficiently allocated to pipeline stages, reducing design size
and place and route times.

Further examination of the utility of the approach is planned
with the full implementation of the initial hazard detection
algorithms in the ALHAT project [21]. Unlike coordinate
conversion and re-gridding, hazard detection is computation-
bound with high potential parallelism, exercising the
generality of the approach. The algorithm has been updated
several times since this initial version [3] providing a relevant
case to test the difficulty of design modification using the
phase-coherent framework. The approach will also be
considered for application to dynamically configurable ASICs.

7 References
[1] G. Govindu, L. Zhuo, S. Choi, P. Gundala, V. Prasanna, “Area, and

Power Performance Analysis of a Floating-point based Application on
FPGAs”, In Proceedings of the Seventh Annual Workshop on High
Performance Embedded Computing (HPEC 2003),
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.157.9977.

[2] C. Epp, E. Robertson, T. Brady, "Autonomous Landing and Hazard
Avoidance Technology (ALHAT)," Aerospace Conference, 2008
IEEE,pp.1-7,March. 2008,doi: 10.1109/AERO.2008.4526297.

[3] C. Villalpando, A. Johnson, R. Some, J. Oberlin, S. Goldberg,
"Investigation of the Tilera processor for real time hazard detection and
avoidance on the Altair Lunar Lander," Aerospace Conference, 2010
IEEE, pp.1-9, March, 2010, doi: 10.1109/AERO.2010.5447023.

[4] M. Cardoso, P. Diniz, and M. Weinhardt, “Compiling for
reconfigurable computing: A survey,” ACM Comput. Surv. 42, 4,
Article 13, June 2010, pp. 1-65,doi:10.1145/1749603.1749604.

[5] K. Sano, T. Iizuka, S. Yamamoto, "Systolic architecture for
computational fluid dynamics on FPGAs," Field-Programmable Custom
Computing Machines, 2007. FCCM 2007. 15th Annual IEEE
Symposium on, pp.107-116, April 2007,doi: 10.1109/FCCM.2007.20.

[6] S. Qasim, S. Abbasi, B. Almashary, "A proposed FPGA-based parallel
architecture for matrix multiplication," Circuits and Systems, 2008.
APCCAS 2008. IEEE Asia Pacific Conference on, pp.1763-1766, Nov.
2008, doi: 10.1109/APCCAS.2008.4746382.

[7] D. Goodwin and D. Petkov, “Automatic generation of application
specific processors,” Proceedings of the 2003 International Conference
on Compilers, Architecture and Synthesis for Embedded Systems

[8] J. Yu, C. Eagleston, C. Han-Yu Chou, M. Perreault, and G. Lemieux,
“Vector processing as a soft processor accelerator,”

(CASES '03). ACM, New York, NY, USA, pp. 137-147,
doi:10.1145/951710.951730.

ACM Trans.
Reconfigurable Technol. Syst.

[9] J. Tripp, K. Peterson, C. Ahrens, D. Poznanovic, M. Gokhale, "Trident:
an FPGA compiler framework for floating-point algorithms," Field
Programmable Logic and Applications, 2005. International Conference
on, pp. 317-322, Aug. 2005, doi: 10.1109/FPL.2005.1515741.

 2, 2, Article 12, June 2009, pp. 1-34,
doi:10.1145/1534916.1534922.

[10] G. Lienhart, A. Kugel, R. Manner, "Rapid development of high
performance floating-point pipelines for scientific simulation," Parallel
and Distributed Processing Symposium, 2006. IPDPS 2006. 20th
International, pp.8 April, 2006, doi: 10.1109/IPDPS.2006.1639439.

[11] F. de Dinechin, C. Klein, B. Pasca, "Generating high-performance
custom floating-point pipelines," Field Programmable Logic and
Applications, 2009. FPL 2009. International Conference on , pp.59-64,
Sept. 2009, doi: 10.1109/FPL.2009.5272553.

[12] K. S. Hwang, A. E. Casavant, C. Chang, M. d'Abreu, "Scheduling and
hardware sharing in pipelined data paths," Computer-Aided Design,
1989. ICCAD-89. Digest of Technical Papers., 1989 IEEE International
Conference on, pp.24-27, Nov. 1989, doi:
10.1109/ICCAD.1989.76897.

[13] S. Wakabayashi, N. Ohashi, J. Miyao, N. Yoshida, "A synthesis
algorithm for pipelined data paths with conditional module sharing,"
Circuits and Systems, 1992. ISCAS '92. Proceedings., 1992 IEEE
International Symposium on, vol.2, pp.677-680, May 1992, doi:
10.1109/ISCAS.1992.230161.

[14] S. Mondal, S. Memik, "Resource sharing in pipelined CDFG synthesis,"
Design Automation Conference, 2005. Proceedings of the ASP-DAC
2005. Asia and South Pacific, vol.2, pp. 795- 798, Jan. 2005, doi:
10.1109/ASPDAC.2005.1466464.

[15] D. A. Patterson and J. L. Hennessy, Computer Architecture: A
Quantitative Approach, 3rd

[16] J. R Gurd, C. C Kirkham, and I. Watson, “The Manchester Prototype
Dataflow Computer”,

 ed. San Francisco: Morgan Kaufmann
Publishers, 2003.

Commun. ACM

[17] H. Styles, D.B. Thomas, W. Luk, "Pipelining Designs With Loop-
Carried Dependencies," Field-Programmable Technology, 2004.
Proceedings. 2004 IEEE International Conference on, pp. 255- 262, 6-8
Dec.2004doi: 10.1109/FPT.2004.1393276.

 28, 1, January 1985, pp.34-52,
DOI=10.1145/2465.2468.

[18] K. Shih, et al., “Fast real-time LIDAR processing on FPGAs,”
http://www.informatik.uni-trier.de/~ley/db/conf/ersa/ersa2008.html
(accessed 6/3/2011).

[19] W. Sun, M. Wirthlin, S. Neuendorffer, "FPGA pipeline synthesis design
exploration using module selection and resource sharing," Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions
on,vol.26,no.2,pp.254-265,Feb.2007,doi: 10.1109/TCAD.2006.887923.

[20] J. Villarreal, A. Park, W. Najjar, R. Halstead, "Designing modular
hardware accelerators in C with ROCCC 2.0," Field-Programmable
Custom Computing Machines (FCCM), 2010 18th IEEE Annual
International Symposium on, pp.127-134, May, 2010,
doi: 10.1109/FCCM.2010.28.

[21] A. Johnson, A. Klumpp, J. Collier, A. Wolf, “Lidar-based hazard
avoidance for safe landing on Mars,” http://trs-new.jpl.nasa.gov/dspace/
(accessed 6/3/2011).

http://www.informatik.uni-trier.de/~ley/db/conf/ersa/ersa2008.html�
http://trs-new.jpl.nasa.gov/dspace/�

	1 Introduction
	2 Related Work
	3 Implementation Framework
	3.1 Dynamically Configurable Pipeline
	3.2 Phase Tag Control
	3.3 Phase-Coherent Resource Allocation

	4 Prototype Application
	4.1 Coordinate Conversion and Re-gridding
	4.2 Experimental Setup

	5 Results
	6 Conclusions
	7 References

