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Abstract - The Phase-Coherent Dynamically Configurable 
Pipeline is a concept for the rapid implementation of pipelined 
computational algorithms in configurable hardware.  The 
approach allows a high level of sharing of floating-point 
resources among multiple computations.  The concept features 
a simple tag-based control scheme and a sparse-pipeline 
allocation approach that enables all the stages of an 
arithmetic pipeline to be processing simultaneously, with 
multiple computations allocated to the same pipeline.  Thus 
the approach increases hardware resource utilization and 
reduces power consumption.  A framework is presented that 
implements the concept.  The current framework targets a 
Field-Programmable Gate Array (FPGA), and simplifies the 
coding phase of the algorithm and troubleshooting.  The 
framework is demonstrated on a technology currently under 
development by NASA to provide automatic hazard detection 
and avoidance for spacecraft landing systems. 
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automatic landing, pipeline  

 

1 Introduction 
  The implementation of computational algorithms is 
governed by the requirements of the application.  In meeting 
these requirements the designer is also concerned with 
development time and maintainability of the implementation 
in the face of changes to the algorithm. Frequent algorithm 
design changes may occur due to parallel development of the 
algorithm and its realization.   

For 3-dimensional, real-time, dynamic computational 
applications such as found in space systems, requirements for 
fast but low power processing often direct the search for 
implementation options to custom configurable solutions. 
Field-Programmable Gate Array (FPGA) implementations 
have been shown to have up to a factor of ten less power 
consumption compared to microprocessors [1].   

This work investigates applying reconfigurable technologies 
in support of the Automated Landing and Hazard Avoidance 
Technology (ALHAT) project [2].  ALHAT is developing a 

system for the automatic detection and avoidance of landing 
hazards to spacecraft.  The system is required to process large 
amounts of terrain data from a Light Detection and Ranging 
(LIDAR) sensor, within strict power constraints.  Current 
design environments for configurable hardware development 
require substantial knowledge and expertise in hardware 
design, and these are not traditional skills of algorithm 
designers.  Development times for custom hardware solutions 
are also significantly higher than for a software 
implementation.  These two characteristics can cause projects 
to prefer software and microprocessor-based solutions despite 
the performance potential of configurable hardware [3].   

The wide dynamic range associated with 3-dimensional 
transformations in applications such as ALHAT is best suited 
to floating-point arithmetic, a primary driver of the 
complexity of configurable hardware design.  Operators in 
High Level Design Languages (HDLs) do not support 
floating-point arithmetic, as found in most software 
languages.  Many efforts in the field of configurable 
computing research focus on developing compilers and 
frameworks to allow the design entry phase to have a similar 
complexity level as traditional software design [4].  If a 
framework with the capabilities required is not available, 
design alternatives include systolic array implementation or 
the development of a custom processor.  In a systolic array, 
the operations and data path are designed specifically for the 
desired operation [5], [6].  This approach typically produces 
the highest performance when compared to other options, but 
the design is not flexible and changes to the high level 
algorithm require new iterations of a potentially time-
consuming design effort.  Often particular computations occur 
only a small fraction of the time, but the systolic array 
computational resources are wired for a specific computation.  
HDL tools will take advantage of if-then-else topology to 
recognize when in-line fixed point resources can be re-used, 
but not module based floating-point resources.  In addition, 
real-time dynamic applications that interface with numerous 
sensor systems are characterized by sparse data arrivals from 
those systems.  In this sparse data environment fully-pipelined 
designs are not used to their full capability.   



Custom soft processors provide more flexibility to algorithm 
changes, and better accommodate re-use of resources, but 
have a more substantial initial design effort.  These processors 
may use instructions tailored to the application in order to 
perform competitively with general purpose Application 
Specific Integrated Circuit (ASIC) processors [7], [8]. 

This work addresses the issues of development time for 
floating-point arithmetic algorithms in configurable hardware 
and ease of design modification with a framework that is 
simple in comparison to a software-to-hardware compilation 
system.  The framework enables the definition of 
dynamically-configured floating-point pipelines in HDL that 
follow the flow of a software implementation more closely 
than a systolic array, and is suitable for straightforward 
translation from an executable software implementation that 
can be used for verification of the design.  The pipelines use a 
data tag control scheme that avoids the complexity of 
centralized pipeline control logic.  The tag approach allows 
dynamic configuration of pipeline components on a cycle by 
cycle basis, and supports traditional fully pipelined data path 
configurations, and several schemes for re-use of unallocated 
cycles in sparsely filled pipeline configurations.  Re-use of 
unallocated cycles requires definite knowledge of where those 
cycles are.  In one method of particular interest, resource 
constraints are addressed with a phase-coherent allocation 
approach that overloads pipeline stages with multiple 
operations, without the need for a scheduling algorithm or 
complicated control logic.  

This paper is organized as follows.  Section 2 describes 
research related to the approach described in this work, 
Section 3 provides details of the dynamically configurable 
phase-coherent pipeline design, the prototype test application 
and experimental platform are discussed in Section 4, test 
results are discussed in Section 5, and a description of plans 
for future work is provided in Section 6.    

2 Related Work 
 Several examples exist in the literature of research 
frameworks for the implementation of floating-point 
computations on configurable hardware. In [9], the Trident 
compiler for floating-point algorithms written in C is 
described.  The framework represents a substantial 
development effort with all the functionality of a traditional 
compiler: parsing, scheduling, and resource allocation.  A 
custom synthesizer that produces Very High Level Design 
Language (VHDL) code and custom floating-point libraries 
are also included.  The phase-coherent pipeline approach does 
not require the complex components found in the Trident 
system, and is suitable for straightforward translation from C 
code to VHDL defining the pipeline design. 

The authors in [10] present a VHDL auto-coder to reduce the 
development time of floating-point pipelines.  A computation 
is defined in a custom HDL-like pipeline description file, and 

the code for a single pipeline implementing the computation is 
produced.  The approach requires a user to learn the author’s 
custom HDL, and does not attempt to share resources.  A C++ 
to VHDL generation framework is presented in [11], using an 
object-oriented approach to VHDL auto-coding of arithmetic 
operations.  All computations are subclasses of a class 
“operator”, and a method of the class “operator” produces 
VHDL to implement a pipeline for the computation.  Again a 
user must learn the author’s syntax to define computations and 
resource constraints are not addressed. 

The resource sharing approach for phase-coherent pipelines 
has some similarities to those developed for ASIC synthesis 
algorithms.  Hwang et al. [12] define the Data Introduction 
Interval (DII) as the period in clock cycles between new data 
arrivals at the input of a pipeline.  A DII equal to one 
represents fully pipelined operations.  As discussed in Section 
3, a DII greater than one is required for phase-coherent 
resource sharing.  Resource sharing approaches are described 
in [13] and more recently for FPGAs in [14], where analysis 
of a data flow graph of the computation and heuristics must be 
used.  The phase-coherent allocation approach is governed by 
simple algebraic relationships and does not require complex 
analysis or heuristics.  Phase-coherent allocation does not 
perform dynamic scheduling, and does not require any 
scoreboarding method [15] or hardware to check for structural 
or data hazards. 

The association of tag values with data for control discussed 
in Section 3 is similar to the tagged-token dataflow 
computational model used in the Manchester Dataflow 
Machine [16]. The local pipeline control in our method is 
simpler, and does not require a matching unit, token queue, or 
overflow unit.  Tagged-token dataflow concepts have also 
been used more recently in a configurable hardware 
implementation for parallel execution of multiple loop 
iterations [17].   
 
A hand-coded systolic array and MATLAB®-based FPGA 
implementation of the coordinate conversion stage of 
processing LIDAR scan data for an automatic landing hazard 
detection system is compared in [18].  Fixed-point arithmetic 
is used.  As previously discussed, a hand-coded systolic array 
is not easily adaptable to algorithm design changes.  The 
MATLAB® solution is more easily developed and adapted, 
but is most suitable to the processing of streaming data and 
would not be an effective approach for other computations, 
such as the hazard detection stage of the ALHAT algorithm. 
 
3 Implementation Framework 

In this section, the key elements of the phase-coherent, 
dynamically configurable pipeline framework are described.  
An example design is used to illustrate how the concepts work 
together to provide the benefits of the approach. 

    



3.1 Dynamically Configurable Pipeline 
In the context of this work, a dynamically configurable 
pipeline is a pipelined operation with an interconnect 
configuration that is selectable during circuit operation.  This 
selectable input/output configuration between floating-point 
operations, temporary storage, and input/output devices is 
achieved with multiplexers on each port of the pipeline.  As 
stated in [19] the resource overhead of using multiplexers to 
share computing resources is balanced by the reduction of 
resources achieved.  An additional concern, particularly for 
reconfigurable computing, is development time [20].  
Dynamically configurable pipelines provide a flexible data 
path that is easier to modify than the fixed data path of a 
systolic array, reducing overall development and maintenance 
time.   
            
3.2 Phase Tag Control 
A dynamically configurable data path allows the inputs of an 
operation to be consuming operands and results to be 
produced for different computations potentially every clock 
cycle.  Further, operations such as floating-point arithmetic 
typically require latencies greater than one to function at high 
enough clock frequencies to meet the performance 
requirements of applications.  A control scheme is required to 
route operands and results between pipelines and other 
resources with the correct timing.  In contrast to using a 
scheduling algorithm and global control approach, a 
distributed phase tag control method is used. 
 
In the phase tag control method, a tag word is associated with 
a set of inputs.  The tag is assigned to a buffer that has the 
same latency as the operation consuming the inputs.  The 
buffer is called a phase keeper.  The output of the phase 
keeper is tested to determine when the outputs of the operation 
are valid for the inputs associated with the tag.  One tag can be 
used to control the input/output configuration of many 
floating-point units, providing all units have the same latency.  
For coding convenience, and to handle occasional units with 
different latency, phase keepers were built in to all our floating 
point units.  If they are not used, the HDL tool flow removes 
them automatically.  The functional units output two phase tag 
words.  The ready tag (.r), usually with a latency of one clock 
cycle, is used to signal that a pipeline is ready to accept data.  
The completion tag (.p) indicates that an operation is finished.  
The tags are used to control the inputs and outputs of a 
pipeline.  The content of the tag is used by an algorithm 
developer to indicate which step of the computation is 
associated with the operands or results.  The phase tag control 
approach supports both dense and sparsely allocated pipelines.  
Examples of several design cases follow. 
 
Figure 1 is a VHDL code sample of the dynamically 
configurable pipeline and phase tag control approach.  The 
design is a fully pipelined implementation of the computation 
A+B+C+D=sum.  In this and the remaining code examples, 

the  signal AI(n) is an array of records that bundles data,  
phase tag, and function (addition or subtraction) for the input 
of adder unit n.  AO(n) is an analogous signal for the output of 
the unit.  The signals PI(n) and PO(n) are arrays of phase tag 
signals for the input and output, respectively, of phase keeper 
unit n.   
 
In this example, three adders are connected such that the first 
unit (0) adds inputs A and B in parallel with the second unit 
(1) that adds inputs C and D.  The outputs of the first two 
adders are wired to the inputs of the third adder (2), typical of 
a systolic array.  Instead of an explicit state machine to control 
the output of the pipeline when the result of the computation is 
valid, the phase tag appearing at the output of the third adder, 
AO(2).p, is tested to determine  when to store the result in 
registered signal sum1.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Example of dynamically configurable phase-tag control design of 
a fully pipelined implementation of the computation A+B+C+D=sum. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Figure 2.  Example of dynamically configurable phase-tag control design of 
a sparsely pipelined implementation of the computation A+B+C+D=sum. 

…
ad0 : FADDP  port map (clk, AI(0), AO(0));    --adder unit instantiations
ad1 : FADDP  port map (clk, AI(1), AO(1));
ad2 : FADDP  port map (clk, AI(2), AO(2));

process (clk) begin
if rising_edge(clk) then
…
AI(0) <= (ZERO, ZERO, NOPH, ADD);
AI(1) <= (ZERO, ZERO, NOPH, ADD);
AI(2) <= (ZERO, ZERO, NOPH, ADD);

if example1 then                 -- *** static full rate pipe with 3 adders ***
if data_strobe then            -- initiate first two adds on data strobe

AI(0) <= (data_a, data_b, x"10", ADD);
AI(1) <= (data_c, data_d, x"10", ADD);

end if;
AI(2) <= (AO(0).o, AO(1).o, AO(0).p, ADD); -- intermediate sums always wired to final adder
if AO(2).p = x"10" then

sum1 <= AO(2).o;                -- consume result when tag appears at output
end if;

end if;

…

end if;
d 

 

…
process (clk) begin
if rising_edge(clk) then
…
AI(0) <= (ZERO, ZERO, NOPH, ADD);
AI(1) <= (ZERO, ZERO, NOPH, ADD);
AI(2) <= (ZERO, ZERO, NOPH, ADD);

if example2 then                 -- *** sparse pipe with only one adder and max rate ***
if data_strobe then

AI(0) <= (data_a, data_b, x"10", ADD);      -- initiate first add on data strobe
end if;
if AO(0).r = x"10" then

AI(0) <= (data_c, data_d, x"11", ADD);      -- initiate second add as soon as adder ready for input
end if;
if AO(0).p = x"10" then

sum_ab <= AO(0).o;             -- save sum a+b for one clock cycle
end if;
if AO(0).p = x"11" then

AI(0) <= (sum_ab, AO(0).o, x"21", ADD);   -- initiate final sum
end if;
if AO(0).p = x"21" then

sum2 <= AO(0).o;                -- consume final sum
end if;

end if;
…
end if;
end process;

 



clock trigger logic adder pipe stage 1 adder pipe stage 2
1 DATA STROBE A1 & B1 to adder, tag #10
2 ready #10 tag C1 & D1 to adder, tag #11 process A1+B1
3 process C1+D1 process A1+B1
4 done #10 tag save A1+B1 process C1+D1
5 done #11 tag C+D, A+B to adder, tag #21
6 DATA STROBE A2 & B2 to adder, tag #10 process final sum
7 ready #10 tag C2 & D2 to adder, tag #11 process A2+B2 process final sum
8 done #21 tag store or forward result process C2+D2 process A2+B2  

Figure 3.  Configuration logic events, event triggers, and processes allocated 
to adder unit pipeline stages for example of a sparsely pipelined 
implementation of the computation A+B+C+D=sum. 

Figure 2 shows the same computation implemented with only 
a single adder unit, and assuming a DII that results in sparse 
data arrival strobes compared to the length of the computation.  
In this example, the ready tag is tested to determine when the 
adder unit can accept a second input.  This approach allows 
the single adder to process the first two add operations as 
quickly as possible without a conflict.  Note that intermediate 
results must be saved for the first addition because the result 
cannot be consumed immediately.  Intermediate results can be 
stored up to the register resource limit of a particular part. 
 
Using a two stage floating-point adder module, Figure 3 shows 
the processes allocated to each adder stage, the configuration 
logic for each clock cycle, and the event which triggers the 
logic.  Data point 1 is shown in bold.  A second data point is 
in gray.  The minimum DII is 5 clock cycles, at which time the 
previous point is finished with the adder input.  The pipe is 
still processing the previous point, but the correct actions will 
be triggered by tags as they emerge from the pipe, as each 
carries configuration “knowledge" of what should be done 
with its associated data. 
 
The phase tag scheme makes call and return logic, similar to 
subroutine calls in software programs, possible in a 
configurable hardware design.  The re-used adder has 
effectively become a call and return module.  The tag 
associated with data input indicates where the control logic 
should resume when the adder is finished.   
 
In addition to tags, an application can use mode variables to 
control the configuration of the pipeline units.  Mode variables 
can allow use of fewer distinct tags.  But the pipe has to be 
completely empty before changing a mode variable.  The 
examples do not have mode variables, but they were used in 
our prototype application. 
 
Note that the tags are strobes.  Initialization code gives them 
the default value “NOPH” (no phase) unless they are 
specifically assigned.  If a group of functional units will be re-
used in a different module, then this initialization should be 
contingent upon a mode variable.  The functional units are set 
up with tri-state input signals so that they can be shared 
between modules.  All that is required is to pass the input and 
output signals for the functional units to the active module, 
and enable initialization defaults only in the active module.  If 
the DII is not regular, then buffers should be used to ensure 
that the minimum DII is met. 

The example in Figure 2 uses intra-pipeline stage sharing to 
process more than one computation stage on a single adder 
unit.  Effective resource sharing using this method can be a 
complicated problem [14].  In the next section, the concept of 
phase-coherent resource allocation is presented as a 
straightforward means of accomplishing intra-pipeline sharing. 
The allocation is constrained by simple relationships based on 
the DII and minimum pipeline unit latency.  These criteria are 
not restrictive in real-time data processing systems that 
interface with various sensor subsystems with different 
latencies.  In such systems, fully pipelined computations are 
not generally required.   
 
3.3 Phase-Coherent Resource Allocation 
Phase-coherent pipeline allocation is a simple means to allow 
pipeline stage sharing that enables different computations to 
be allocated to the same functional units.  The method requires 
that results associated with a particular computational 
sequence all emerge at a constant phase, that is, at a constant 
multiple of a minimum unit latency L.  If a unit does not 
naturally have this latency, it must be padded with enough 
empty pipeline stages.  The multiplex stage is included in the 
latency value.  The DII should be equal to or greater than L1

 

.  
The pipe can be said to have L independent phases.  For 
maximum re-use, successive data inputs are allocated to 
different phases, until all phases are used, and only then are 
conflicts possible.  Under these conditions, a simple algebraic 
relationship can be used to compute the period of time that 
units can be re-used as follows.   

Given a dynamically configurable pipelined functional unit 
with a latency of L, each pipeline stage, Sp(n), can process a 
datum of an independent computation.  The reuse interval, IR

             

, 
is defined as the number of clock cycles in which units can be 
reused freely.  This interval is computed as shown in (1).  

LDIIIR ⋅=                                         (1) 
 

For maximum re-use, the interval can be applied separately to 
each functional unit.  The reuse interval may be applied 
manually if hand-coding or incorporated into a translator.  
Figure 4 shows a diagram of phase-coherent pipeline 
allocation for the computation of the prior code examples.  In 
Figure 4, the DII=3, L=3, and IR=9.   The dn 

                                                           
1 In real systems, the DII is never regular due to crossing clock domains 
between the sensor systems and application.  First-In First-Out (FIFO) 
buffering can be used to force an average DII allowing the use of the phase-
coherent allocation. 

variables 
represent a set of input operands for the four add operations at 
DII=n. As shown, the phase offsets for allocation are 
implemented with a one or two cycle store of the incoming 
data value at the input of the unit, as shown in clock cycles 3, 
6, and 7.  This is required because the input stage of the unit is 
busy processing prior input data at these cycles.  A latency L 
phase keeper buffer tracks the allocation of available 



computation phases and is used to control the assignment of 
inputs to functional units.  Also shown in Figure 4 is that by 
cycle 8 when the third input data set is consumed, each 
pipeline stage of the unit is processing data.  Intermediate 
results or temporary state variables, for example the 
intermediate addition result A+B, do not benefit from the 
phasing scheme and must either be used within the DII or 
copied every DII clocks.  Alternately they could be retained in 
no-op pipe units. 
 

 
 
Figure 4.  Phase-coherent allocation of a single adder unit performing the 
computation A+B+C+D=sum on three input data sets, d.  The parameters of 
the allocation are DII=3, L=3, and IR

The VHDL that implements the example of Figure 4 is shown 
in Figure 5.  As shown, the code implementing the phase-
coherent allocation method is straightforward and suitable for 
generation by an auto-coder.  The phase tags control each 
stage of the computation as well as the cycle the adder unit is 
free to accept new data.  The dynamically configurable inputs 
and outputs allow the same unit to process each computation 
stage within the reuse interval. 

=9, all in design clock cycles. 

 
4 Prototype Application 

Details of the algorithms supporting ALHAT for landing 
hazard detection and avoidance are provided in [21].  The 
general approach is to produce a regular grid of surface 
elevation data in the coordinate frame of the landing site from 
the LIDAR range samples.  This elevation map is then 
analyzed for surface slope and roughness and compared to 
thresholds for these parameters to identify hazards.  The 
processing stages for LIDAR scan data are coordinate 

conversion, re-gridding, and hazard detection.  The first two 
stages are currently demonstrated in the prototype design. The 
computations implemented are summarized in this section. 
 

 

 

 

 

 

 

 

 

 

 

 
    
 
 
Figure 5.  Example of dynamically configurable phase-tag control design of 
a phase-coherent pipeline implementation of the computation 
A+B+C+D=sum. 

4.1 Coordinate Conversion and Re-gridding 
As described in [21], the coordinate conversion stage converts 
each LIDAR range sample from scanner angle and range 
coordinates to Cartesian coordinates.  The computation is 
shown in (2), where prx, pry, pr,z  are components of the 
converted point, tx, ty, t,z are the components of the sensor 
position vector, px, py, p,z are the components of the range 
sample, and q1, q2, q3, q4 

  (2) 

are components of a quaternion 
vector for the coordinate rotation. 

 

In the re-gridding stage of the computation, converted range 
samples are projected into a grid cell of the elevation map, 
and a bilinear interpolation scheme is used to update the 
elevation of each vertex of the cell containing the projected 
point.  The elevation of the projected point weighted by the 
distance from the point to the vertex is added to the current 
weighted elevation for that vertex.  Updates to the weighted 
elevations and the weights for each vertex of the grid cell 
containing a projected point are made using the computation 
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pk0 : PKEEP  port map (clk, PI(0), PO(0));      --keeper unit instantiations
pk1 : PKEEP  port map (clk, PI(1), PO(1));
…
process (clk) begin
if rising_edge(clk) then
PI(0) <= RDYPH;                                                  --constant indicating units ready for data
waiting <= FALSE;
…
AI(0) <= (ZERO, ZERO, NOPH, ADD);
AI(1) <= (ZERO, ZERO, NOPH, ADD);
AI(2) <= (ZERO, ZERO, NOPH, ADD);

if example3 then                 -- *** phase coherent pipe with DII*L re-use interval ***
PI(0) <= PO(0);               -- default to a re-circulating phase tag
if data_strobe or waiting then
if PO(0) = RDYPH then      -- wait for an available pipe phase

PI(0) <= x"10";            -- phase tag indicates 1st operation this re-use interval
AI(0) <= (data_a, data_b, x"10", ADD);   -- send a and b to adder inputs

else
waiting <= TRUE;           -- if pipe not available, come back and try again

end if; 
end if;
if PO(0) = x"10" then        -- when a+b completes, save and start next
PI(0) <= x"20";
AI(0) <= (data_c, data_d, x"20", ADD);
sum_ab <= AO(0).o;             -- this state variable valid for L clocks or DII/L stages

end if;
if PO(0) = x"20" then        -- when c+d completes, initiate final sum
PI(0) <= x"30";
AI(0) <= (sum_ab, AO(0).o, x"30", ADD);

end if;
if PO(0) = x"30" then        -- when final sum completes ...
PI(0) <= RDYPH;              -- vacate this phase
sum3 <= AO(0).o;                -- consume result

end if;
end if; -- end example3  

…
end if;
end process;

 



shown in (3).  In (3) r and c are the row and column numbers 
of the elevation map grid cell vertices, respectively. 

 

 

 

(3) 

 

 

 

 

4.2 Experimental Setup 
The prototype design is tested on a Xilinx® Virtex™-5 

FX130T FPGA hosted on an Alpha Data ADM-XRC-5TZ 
mezzanine card.  The Virtex™-5 family has a radiation 
tolerant version, providing a path to space flight certification 
of the design.  The ADM-XRC-5TZ board has 48 megabytes 
of SRAM across six banks, used for storing the elevation and 
weight data for the elevation map.  The prototype design uses 
two SRAM interfaces that bundle two SRAM banks each.  
The interfaces are designed to use one bank for even addresses 
and one for odd.  This approach makes it possible to run the 
SRAM interface at twice the design rate to reduce memory 
latency.  Currently all interfaces operate at the same clock 
frequency.   

 
A Gigabit Ethernet interface is included for command and 
data input and output.  The prototype is designed to run at the 
Ethernet clock speed of 125 MHz.  To avoid buffering of the 
input data, the prototype is designed with a DII of 12 clock 
cycles.  The 12 cycles is derived from each LIDAR sample 
consisting of three single-precision floating-point components 
of four bytes each. 

With this prototype platform, the coordinate conversion and 
re-gridding computations were implemented within a few days 
using the phase-coherent pipeline approach.  A full-rate 
elevation map computation is verified (input LIDAR samples 
are converted and re-gridded within 12 clock cycles) on this 
prototype.  These results show that the LIDAR data can be 
processed in real time, or faster than real time. 

5 Results 
A comparison of resources used between various 
implementations of the example computation presented in 
Section 3 is shown in Table I.  The resource values are 
reported from the Xilinx® synthesis tools.  The static 

implementation is a direct wiring of the adders and data path 
to realize the computation.  The dynamically 
configurable/phase tag control implementations are designed 
as presented in Figures 1, 2, and 4.  The phase-coherent 
implementations are designs applying the phase-coherent 
method to each case represented by Figures 1, 2, and 4. The 
floating-point units are implemented using the Xilinx® CORE 
Generator™ tool.  DSP slice resources are used in the 
multiplier units but not shown in Table I.  Comparing the 
Lookup Table (LUT) resources between the static and phase-
coherent implementations shows the phase-coherent pipeline 
method yields an 85% reduction in resources.  This means a 
given FPGA can hold the equivalent of about seven times as 
many source lines of floating point application equivalent 
code using the phase-coherent method, as using traditional 
data path methods.  If a particular design does not approach 
resource limits, phase-coherent reuse reduces design size 
resulting in faster place and route. 

TABLE I.  RESOURCE COMPARISON BETWEEN DIFFERENT 
IMPLEMENTATIONS OF COMPUTATION SUM=A+B+C+D. 

Resource 

Implementation- 3 Instantiations of sum=a+b+c+d 

Static 
Dynamically 

Configurable/Phase 
Tag Control 

Phase-
Coherent 

Slice 
Registers 

1198 753 342 

LUTs 4768 1755 705 

Slices 1653 694 309 
LUT/FF 
Pairs 4706 2010 834 

Min. 
Period 6.6ns 6.6ns 6.6ns 

 
6 Conclusions 
The method described in this work achieves substantial 
improvements in the ease of both development and resource 
reuse for pipelined computations on configurable hardware.  
Using this HDL method, declarations and wiring are 
simplified, and operand/result assignments are easily mixed 
with other synchronous code.  The HDL reads like and 
corresponds closely to a software specified algorithm.  This 
allowed rapid design of the prototype, and should allow fast 
response to algorithm changes.  The HDL is suitable for 
straightforward translation from an executable software    
definition that can be used for algorithm verification.  This 
reduces the gap between the expertise required to design 
configurable implementations and that of typical algorithm 
designers.        
 
The difficulty of resource reuse is reduced with a data tag 
control scheme and phase-coherent allocation method that 
replace the need for complex global scheduling, heuristics or 
cycle dependent logic.  Sparse data arrival in real-time is 
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efficiently allocated to pipeline stages, reducing design size 
and place and route times. 
 
Further examination of the utility of the approach is planned 
with the full implementation of the initial hazard detection 
algorithms in the ALHAT project [21].  Unlike coordinate 
conversion and re-gridding, hazard detection is computation-
bound with high potential parallelism, exercising the 
generality of the approach.  The algorithm has been updated 
several times since this initial version [3] providing a relevant 
case to test the difficulty of design modification using the 
phase-coherent framework.  The approach will also be 
considered for application to dynamically configurable ASICs.        
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