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Abstract: The problem of how many colors are required for 

a planar map has been used as a focal point for discussions of 

the limits of human direct understanding vs. automated 

methods. It is important to continue to investigate until it is 

convincingly proved map coloration is an exemplary irre-

ducible problem or until it is reduced. Meanwhile a new way 

of thinking about surfaces which hide N-dimensional volumes 

has arisen in physics employing entropy and the holographic 

principle. In this paper we define coloration entropy or flexi-

bility as a count of the possible distinct colorations of a map 

(planar graph), and show how a guaranteed minimum colora-

tion flexibility changes based on additions at a boundary of the 

map. The map is 4-colorable as long as the flexibility is posi-

tive, even though the proof method does not construct a col-

oration. This demonstration is successful, resulting in a 

compact and easily comprehended proof of the four color 

theorem. The use of an entropy-like method suggests com-

parisons and applications to issues in physics such as black 

holes. Therefore in conclusion some comments are offered on 

the relation to physics and the relation of plane-section col-

or-ability to higher dimensional spaces. Future directions of 

research are suggested which may connect the concepts to not 

only time and distance and thus entropic gravity but also 

momentum. 

Keywords: Graph theory, Combinatorics, Four Color Map 

Theorem, Entropy, Gravity, Equivalence Prin-

ciple 

 

1. Introduction 

The question of the minimum number of colors with which 

to color a map so that no adjacent countries sharing a border of 

non-zero length have the same color has enjoyed popularity 

since the middle 1800s when it was introduced by mathema-

tician Augustus De Morgan, it having come to his attention 

through Francis and Fredrick Guthrie [1]. In 1879-80 well 

known proofs by Kempe and Tait were published and each 

stood for eleven years before being discovered to be incorrect. 

The problem was never of particular concern to actual map 

makers, but was further popularized in September 1960 by 

Martin Gardner writing in the Mathematical Games column of 

Scientific American magazine, followed in 1975 by an April 

Fools hoax column with a supposed counter-example. The 

very next year Kenneth Appel and Wolfgang Haken disclosed 

a computer-generated proof asserting that a counter-example 

must contain, yet could not contain, one of a particular set of 

1,936 maps [2-3]. There was some resistance to acceptance 

because such a proof could not be reliably checked by hand [4]. 

There followed a simpler proof still relying on computers in 

1997 [5], and a proof using theorem-proving software in 2005, 

formally published in 2008 [6]. 

The problem is still interesting. It is an exercise in finding 

the boundary of the problem space which is approachable by 

humans, vs. those which must be solved by automation or 

even artificial intelligence. Its apparent simplicity makes it 

particularly important if it is found to not be solvable by hu-

mans without computer assistance. Thus new proofs continue 

to appear, attempting to best the previous ones in some aspect. 

The author suspects the sub-map approach is a source of 

complexity and difficulty in human construction and verifi-

cation and for some time has sought an alternative. The main 

problem is to guarantee color-ability without constructing a 

particular coloration. Inductions on coloration, or constructive 

proofs, i.e. constructing coloration, fail because later steps in 

the induction sequence, when chosen from among alternatives, 

invariably require re-coloration, or back-tracking, and since 

the order backward cannot be carefully selected and controlled 

as the order forward, the simpler proofs fail. More complex 

proofs succeed but we humans only understand them ab-

stractly, not in detail. The question of interest in this paper is 

whether this is intrinsic to the 4-color map problem itself, or to 

the ways in which it has been conceptualized. 

We consider a conceptualization in terms of state counting, 

very much like entropy, and explore whether state counting 
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can be formulated as a single node induction sequence in a 

way that implements the obvious hiding aspects of planar 

maps while avoiding the back-tracking problem. A state is, 

loosely, a particular coloration of the map. If a different col-

oration is possible, that is another state. Rather than claim 

more than an inspirational connection with entropy (though 

there may be), we will use the term flexibility to indicate a 

known number of coloration states a map may have. We need 

not compute it exactly, only to show that there exists a flexi-

bility which is not higher than the actual state count of a map. 

Then if that flexibility is positive the map is colorable. 

2. Definitions and Overview of Approach 

2.1. Definitions 

The usual convention of representing a planar map as a 

planar graph, as illustrated in Figure 1, will be adopted. In the 

terminology of this paper each node (vertex) is a country or 

region, and the connection (edge) is a shared border. Colors 

are replaced with substitutable symbols A, B, C and D, which 

have no fixed color. That is, “A” may be replaced by any one 

of four colors. Then “B” simply represents any color different 

from “A”, and “C” any color different from A and B, and “D” 

different from the previous three. Sometimes for economy, 

when the situation is clear, we will refer to the symbols to 

identify the node, for example “node A” would be the top node 

in Figure 1. Ability to label the graph nodes so that no con-

nected nodes have the same color label guarantees the map can 

be colored. If we redefine the color mapping to the symbols, 

the map is still colored correctly. Small letters “x, y, …” are 

used as color variables. 

Figure 1 shows a fully connected 4-node map. There is no 

place for a new edge. Ordinary geographical maps, if oceans 

and lakes are included, will generally be fully connected. But 

in any case, if a map is fully connected and colorable and an 

edge is removed, it is still colorable. 

 
Figure 1. Fully connected 4-node map, represented by a graph on the left, 

and overlaid with traditional country-area representation on the right. 

Figure 1 is also topologically equivalent to all possible fully 

connected maps of 4 nodes, which we offer without formal 

demonstration. 

Since every one of the 4 nodes is connected to every other, 4 

colors are required. Given planarity, one of the nodes must be 

hidden and only 3 nodes are exposed on the boundary, which 

we define as those nodes and edges which are exposed to the 

outside of the map. In this figure, nodes and edges on the 

boundary are shown very thick for identification, but from 

here we will use this nomenclature without special graphics. 

“Boundary” then refers to the map rather than a particular 

country (node or vertex) which has a “border” or edges. There 

are several possible boundaries in Figure 1, a matter which we 

will formally deal with in connection with the order of induc-

tion. 

2.2. The Order of Induction 

The induction will begin with a known map of three fully 

connected nodes which must be contained in any map (as we 

will show). For less than three nodes there is no apparent 

outside/inside definable, so the induction would not be uni-

form. 

Using Figure 2 to illustrate terms, the order of induction we 

will use, which can construct any map, follows: 

1. Nodes are added one at a time. 

2. Each time a node is added all edges to the existing map 

are added (one at a time in a separate sub-sequence de-

fined as color flexibility rules). 

3. Only one of the innermost nodes outside the current map 

having more than one connection to the existing map is 

added (to be explained). 

4. Two adjacent edges to the new node are designated as 

new boundary edges. The old nodes to which they 

connect are called corner nodes. Any number of interior 

edges (e.g. yx in Figure 2) may be added, but they will 

connect to nodes not on the new boundary. 

5. The map is redrawn if necessary so that only the two 

edges, and nodes in between to which the new node does 

not connect, and the new node itself, are on the new 

boundary. 

6. Any node not on the new boundary is hidden and no new 

connections from outside can be made. 

Some explanation of 3, 4 and 5 is necessary. Figure 2 shows 

a new node y being added to an existing map. The two 

dark-thick edges are adjacent with respect to a circumnaviga-

tion of the new node y. This accomplishes step 4. 

The figure could have been drawn with the upper edge 

looping around the bottom of the map to connect y and A. We 

must choose either ABxy or ACy or C…xy as the new 

boundary. Arranging the drawing as in Figure 2 chooses ABxy. 

In either case, A and x are the corner nodes for the new addi-

tion. Node y will never connect to node B, accomplishing step 

5. 

 
Figure 2. Illustration of adding induction node “y” – solid lines are an 

existing map, dashed lines are added at the induction step, and ellipses 

indicates additional similar features. 
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Step 3 involves two criteria. Recalling that we require maps 

to be fully connected, circumnavigate an existing boundary to 

identify possible new edges, and the outside nodes to which 

they connect. These all qualify as innermost new nodes. Fig-

ure 3 shows an example for identifying possible new edges 

and their associated nodes. The possible new nodes and edges 

are shown with dashed lines. We must now show there is at 

least one node which has, or can have, more than one con-

nection to the existing map in order to satisfy the remaining 

condition of step 3.  

 
Figure 3. Examples of identification of possible new edges and nodes (new 

elements not in existing map are dashed). Presumption is all new structures 

connecting to existing map (solid lines) are shown. In part (a) several new 

nodes w, u, v connect to one existing node A, which would create a doubly 

exposed boundary segment (see Figure 4), however by fully connecting the 

map (dotted edge with arrows) this is avoided. In part (b) each new node w, u, 

v connects to only one existing node A, B or C, so that if connected one at a 

time again a doubly exposed boundary segment would result. Again by fully 

connecting the map (dotted double arrow edge) this is avoided. Figure parts 

(a) and (b) correspond to text cases a. and b See text for case c. 

Consider three cases: 

a. There are one or multiple new nodes connecting to the 

existing boundary (e.g. u, v, w connecting to A in Figure 

3a). There are no future connections to the existing 

boundary as they would have been identified (shown by 

exclusion circle from u to w). Since the existing 

boundary has at least 3 nodes, the map is not fully 

connected and we can add a connection from a new 

node to the existing boundary (e.g. dotted arrow w→B).  

b. There are multiple new nodes but each connects to only 

one existing boundary node (e.g. u, v, w in Figure 3b). 

Then again the map is incompletely connected and any 

of the new nodes can connect to one of the existing 

boundary nodes which connects to its new neighbor (e.g. 

dotted arrow v→B). 

c. There are multiple new nodes and at least one of them 

connects to two existing boundary nodes. The condition 

is immediately satisfied.  

Note three things about this procedure. It gives an ordering 

which can construct any possible fully connected map. Second, 

during such construction there is always an outside and an 

inside definable, and new connections are only made to the 

outside. This expresses the planarity condition. Third, there is 

never a part of the boundary which is exposed on two sides as 

illustrated in Figure 4, which would leave x and y and the edge 

between doubly exposed (see cases a and b for prevention). 

Thus when adding interior edges in step 4 they will never 

connect to an existing boundary node. 

 
Figure 4. Doubly exposed boundary segment illustration. If node x or y or the 

edge between were hidden on the top they are still exposed below. 

Overview of the induction 

The induction order has been demonstrated to possess two 

properties related to planarity: the hiding of map sections and 

avoiding doubly exposed boundary segments. It remains to do 

the following: 

Select a suitable induction hypothesis, a property of the 

boundary independent of the interior and involving partition-

ing of the boundary into exposed and hidden parts, which 

guarantees the map can be colored when a new node is added. 

 

1. Show that the boundary of a universal starter map has 

this property. 

2. Show that the property is true of the boundary when a 

node is added. 

 

We will have two induction hypotheses, which can be sep-

arately proved, theorems 1 and 2. The first asserts that the 

whole map flexibility is the product of suitably defined node 

flexibilities (within the induction sequence), and the second 

asserts a degree of independence in the guaranteed flexibilities 

which simplifies computing them, but implies map flexibility 

is only “at least” that much rather than exactly so. 

3. Starter Map and Color Flexibility 

3.1. Starter Map 

Suppose we start with one node and add one edge to a se-

cond node. This map is fully connected. Using the established 

induction sequence let us add one new innermost node. By the 

previously demonstrated principles, this node will connect to 

both existing nodes forming a 3-node fully connected map. 

Therefore, every [interesting] map must contain such a starter 

map which can be used to begin the induction. 

3.2. Guaranteed Minimum Color Flexibility 

Let us label the first node (in the starter map) with the 

number of colors from which it may choose. Call this number 

color flexibility (F). The following initial flexibility-rules will 

be both amended and justified later: 

Start with flexibility 1 4NF    for any new node 1N  . 

When adding a new edge, one needs to decrease the color 
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flexibility of only one of the nodes which the edge connects. 

Either may be chosen. 

We assert a physical meaning for guaranteed minimum 

color flexibility via the following: 

Theorem 1: The number of colorations of a map is at least 

the product of the node flexibilities computed according to the 

given flexibility-rules. 

 
Figure 5. Starter map with color flexibility indicated. 

For the starter map, we prove the theorem by enumeration. 

The combinatorial product of colorations indicated for the 

3-node map in Figure 5 is 3 4 3 2 24mapF x x  . The color 

combinations possible for three nodes 1, 2 and 3 are shown in 

Table 1. 

Table 1. Color combinations possible for three nodes. 

 
node1 node2 node3 

1 A B C 

2 A B D 

3 A C B 

4 A C D 

5 A D B 

6 A D C 

7 B A D 

8 B A B 

9 B C A 

10 B C D 

11 B D A 

12 B D C 

13 C A B 

14 C A D 

15 C B A 

16 C B D 

17 C D A 

18 C D B 

19 D A B 

20 D A C 

21 D B A 

22 D B C 

23 D C A 

24 D C B 

3.3. Flexibility Independence and Revised Rules 

We now introduce the notion independent flexibility 

whereby a node or group of nodes has a flexibility that is 

independent of other nodes, so that the flexibilities can be 

multiplied together to get a minimum map flexibility. The 

actual map flexibility might be larger. We are only concerned 

with an easily computable value which is not greater than the 

actual flexibility. We define the following re-

vised-flexibility-rules for computation on which arguments 

about independence will be based: 

1. For the starter map all boundary nodes have independ-

ent flexibility 2bF  . 

2. Assume that for a map of N nodes all boundary nodes 

have independent flexibility 2bF  . Add a new node 

N+1 according to the induction sequence.  

3. When edges are added from new node N+1 to the two 

corner nodes, decrease the flexibility of node N+1 so 

that the new node now has independent flexibility 

1 2NF    and 2bF   is preserved in the new map.  

4. All further edges will be to newly hidden nodes, for-

merly on the boundary, but never again subject to edge 

attachment since there are no double exposed nodes. In 

those cases decrease the independent flexibility of the 

newly hidden nodes. Since they previously must have 

had 2bF  , and there is never more than a single such 

connection added to the single new node, none of them 

will fall below 1iF  . 

These rules avoid the possibility that flexibility ever falls to 

or below zero for any node. But we have not yet shown the 

computation is meaningful, which we do now. We extend the 

notion of independent flexibility to all map boundaries in 

Theorem 2 below: 

Theorem 2: Color flexibilities computed via the stated re-

vised-flexibility-rules and induction sequence from the revised 

starter map are independent, so that when an edge is placed 

one possibility can be subtracted from either node connected 

to the edge, and the map flexibility product still represents a 

guaranteed minimum number of coloration possibilities. 

Back-tracking will be blocked by theorem 2. That does not 

mean re-coloring is unnecessary, which can be demonstrated 

via simple examples. Theorem 2 is abstract and involves 

conditional facts (flexibility regarding number of choices 

conditional on color) rather than concrete facts (color). 

4. Induction for Theorems 1 and 2 

The initial state for both theorems has already been proved 

by enumeration (Table 1), and the induction hypotheses con-

sist of the theorems themselves. For the induction step we 

assume some existing map with N nodes and independent 

flexibility mapNF  which meets the conditions of the theorems, 

and we add a node N+1 with flexibility 1 4NF    and no 

edges. The assertion of theorem 1 is still true since for every 

combination of the existing map we can list 4 color choices for 

node N+1 giving 1 14mapN mapN mapN NF F F F     . And 

vice versa, for every color choice of N+1 all the color com-

binations for the existing map are available, therefore the 

flexibilities of the existing map and any of its nodes are mu-

tually independent of the flexibility of node N+1, and theorem 

2 also remains true. 

Now we consider adding an edge from node M on the 

border of the existing map with independent flexibility MF  

to the new node N+1 with independent flexibility 1NF  , 

where the existing combined map independent flexibility is 

1 1mapN N M mapXF F F F    , and where mapX  is the map 
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without M or N+1, and mapXF  is the independent flexibility 

product of all nodes except M and N+1. Node M can be either 

a corner node or a newly hidden interior node. We consider 

two cases, the first for the independence of choices for node 

N+1, the second similarly for node M: 

For each coloration possibility of mapX  and node M there 

are 1NF   independent choices for node N+1 (per the 

pre-existing independence supposition). At most one of them 

conflicts when an edge is added to node M. Therefore there 

are at least 1 1NF    independent choices for node N+1 which 

don't conflict with a given configuration of the existing map, 

and the minimum combined independent flexibility of the new 

map is at least 1 1( 1)mapN N M mapXF F F F     . 

For each coloration possibility of mapX  and node N+1 

there are MF  independent choices for node M (again the 

pre-existing independence supposition). For each choice at M 

at most one of the choices conflicts when an edge is added to 

node N+1. Therefore there are at least 1MF   choices for 

node M which don’t conflict with the particular configuration 

of mapX and N+1, and the minimum combined independent 

flexibility of the new map is at least 

1 1 ( 1)mapN N M mapXF F F F     . 

The reader may notice that quantities 1mapNF   of case 1 

and case 2 are not necessarily equal. It doesn’t matter as long 

as each is not greater than the actual map flexibility. 

Now consider adding a second or later edge between node 

N+1 and the remainder of the map, and again designate the 

node to which N+1 will connect as being node Q. As the 

flexibilities are up to now independent, we can decompose the 

problem of adding an additional edge to make it identical to 

adding the first edge. Some node somewhere has been dec-

remented to reflect the addition of the first edge. We do not 

care where except to exclude node Q itself. It cannot in fact 

have been node Q because our flexibility computation rules 

prohibit decrementing non-hidden nodes in the boundary. 

Thus we can compute a combined map flexibility of 

1 1mapN N Q mapYF F F F     where mapYF  is a reduced 

combined flexibility for the map without nodes Q or N+1, 

reduced considering the previous edge addition, but not zero 

or negative since the revised-flexibility-rules will never pro-

duce a node flexibility less than one. That is, some node of 

flexibility 2 or higher has been decremented. 

We may now follow the previous argument of cases 1 and 2 

using QF  and mapYF . And we may continue to add edges as 

long as each will decrement either the new node (up to two 

times), or a unique node on the old boundary now hidden. The 

new map satisfies all necessary conditions for theorems 1 and 

2. If we begin with the revised starter map which has the re-

quired independent flexibility 2bF   at each boundary node 

then by induction theorems 1 and 2 are proved, as both the 

flexibility product and independence properties propagate to 

every next larger map. The following corollary is evident: 

Corollary to Theorem 1: A map is 4-colorable if color 

flexibility 1iF   for _i all nodes . 

For the induction sequence and the revised-flexibility-rules’ 

choice of decrements, theorems 1 and 2 are true. Thus at each 

point the flexibilities are independent, and there will never be 

a case where making a choice at one node decreases the 

guaranteed minimum number of independent choices at an-

other node. Since the guaranteed minimum flexibility of no 

non-hidden node (i.e. new boundary node) is decremented by 

the addition of a new boundary node, and since the new 

boundary node N+1 has 1 2NF   , it remains true for the new 

map of N+1 nodes that for all boundary nodes 2bF  . Since 

any fully connected map can be constructed by the induction 

sequence, then it can be constructed with 1iF   meeting the 

condition of the corollary to theorem 1. Since any planar map 

at all can be constructed by removing edges from a fully 

connected map without decrementing any flexibility assign-

ments, then any planar map is 4-colorable. 

5. Discussion 

A human readable proof has been constructed using the new 

single-node induction sequence and coloration flexibility 

concepts. Though some parts were elusive, they seem less 

elusive in retrospect than other problems long solved. Even 

Fermat’s Last Theorem was proved over a decade ago [7]. It is 

probably much more difficult (100 pages using mathematics 

developed long after Fermat) and stood unsolved for twice as 

long. However, as in the present case, additional time, confi-

dence and new conceptualizations have produced multiple 

remarkably shorter proofs, and new implications for other 

fields such as biology [8]. 

The author has a vague recollection of trying the counting 

(flexibility) method 40 years ago, but the present induction 

sequence was not evident to the author at that time. The date of 

discovery of the induction sequence is uncertain. By then the 

“human” author was in a repeating loop like an automaton, 

trying various color exclusion hypotheses, failing because of 

the uncontrollability of the back-tracking required, eventually 

forgetting the details but remembering the simplicity, and 

starting over. Once the induction sequence was in place and 

color sets were given up in favor of flexibility, the problem 

was quickly solved in its essentials, though numerous re-

finements were added over about two years. 

The author was not initially familiar with the sub-map ap-

proaches in the historical literature, and after a brief initial 

foray into sub-maps quickly abandoned them. Something 

similar was also a factor in an unrelated century-old problem 

of finding a simplified derivation for geometric gravity, whose 

resolution [9] was a stimulus to the present work and results in 

the following suggestion. The substance of [9] is to decouple 

exact General Relativity in the observable universe from so-

lutions to the field equations involving exotic topologies 

which are in some cases unobservable (e.g. beyond the 

Schwarzschild radius) and in other cases speculative (e.g. 

wormholes). Thus the author conjectures we might replace the 

old four-color problem with a new one: that if and only if maps 

drawn in conventional geometric planes (composed of straight 

lines, albeit remaining within the spatial geometry) are all 
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four-colorable then the geometry has no wormholes. The 

effect of a wormhole on coloration is illustrated in Figure 6.  

 
Figure 6. Five color map via wormhole connection. 

There is a time version of the conjecture also: that if and 

only if such maps constructed in time-wise order by the in-

duction sequence are all still 4-colorable then the space-time 

chronology is protected [10], because connection to a prior 

point in time would also connect to a since-hidden node and 

would contradict the premise of 4-color-ability. Defining the 

“straight lines” suitably is part of the problem. “Geodesics” do 

not seem appropriate as these can describe photon orbits, 

which do not seem to have a bearing on map color-ability. 

As to physics generally, entropy, and the holographic prin-

ciple, quantum states are discrete somewhat like color choices, 

though more complex, and are constrained in many regimes 

by the Pauli Exclusion Principle. The exclusion principle 

could be considered analogous to the exclusion of neighboring 

colors in the map problem. Electrons in an atom, for example, 

may not have the same energy state as neighbor electrons (in 

the same atom). This is a very loose analogy, but striking. 

Counting physical states is a basis of entropy, and leads to the 

holographic principle in which the information about what has 

fallen into a black hole is contained on a surface [11]. In the 

map problem, since in fully connected maps most interior 

nodes have 1iF  , the color flexibility as in black hole en-

tropy is a function of the boundary. 

There is a limitation of the analogy in the following respect. 

Our logical maps have the peculiar property that some interior 

nodes may be rendered irrelevant by enclosing topology. The 

boundary even shrinks if more than one node is hidden when 

adding a new boundary node. However, if we allow the 

boundary nodes to increase in number, then for fully con-

nected maps the coloration flexibility (or entropy) of the entire 

map increases (even if the number of total nodes does not). 

The minimum flexibility computed according to our rules 

does not change unless the number of nodes in the boundary 

changes, and so is entirely a function of the boundary. 

To obtain a concept of mass similar to the surface entropy of 

a black hole, a different set of connection and hiding rules than 

in the planar map problem would be required. They should 

correspond in detail to quantum states, a formidable task 

somewhat hidden by the problem of quantum gravity in very 

strong fields. In the meantime, the author suggests exploration 

of purely mathematical systems having minimum or sufficient 

connection and state counting properties to gain fundamental 

understanding. Verlinde has already suggested an entropic 

origin of gravity emphasizing the holographic principle and 

thermodynamic entropy [12]. While theoretically equivalent, 

taking the approach of information entropy and state counting 

may entail safer or more consistent assumptions. Verlinde 

finds it necessary to derive inertia from the equivalence prin-

ciple, which is not entirely safe if space-time “emerges.” 

Several directions for investigation are evident. Christianto 

and Smarandache’s argument for a discrete-cellular space 

viewpoint fits well with state-counting models as it eliminates 

infinitely small points and thus infinitely many. Infinitely 

many would possibly be ambiguous with respect to counting 

states [13]. Combining Eddington’s notion of a relation be-

tween entropy and time [14-15], and the Minkowski-Einstein 

notion of a relation between space and time [16-17], we find 

that both space and time must be related to state counting, and 

beyond a qualitative relationship, it should be productive to 

pursue a quantitative relationship between state counting and 

both distance and time. One would expect if the train of 

thought is followed, it should result in a formulation of dis-

tance and time such that if the time or distance (or both) ap-

proach zero in one reference frame, the loss of state counts 

must show up in another reference frame as a maximum and 

possibly conserved value, with the maximum distance per 

time value being the universal maximum speed, and negative 

state counts being prohibited as time travel (also to be under-

stood as reversal of global entropy since time travel enters and 

accesses the universe at a prior lower entropy point).  

If space and time are just state counts, matters of dimen-

sionality arise. Units might be “state counts per state count.” 

Events in space-time would define intervals separated in time 

or space by (somewhat interchangeable) state counts. Inter-

actions of discrete-cellular space objects (unit masses making 

quantum state connections with other mass-energy) along a 

path would enable additional possible states, providing the 

derivative of summed state counts with respect to path interval 

state counts. Consider the following as a starting conjecture 

for investigation: 

Gravitational mass is state counts of accumulated 

mass-energy units, to be formulated by connectivity and hid-

ing rules that instead of maintaining a state count (flexibility) 

proportional to boundary nodes only, to the sum of all nodes 

(mass units), but the states are available at the boundary 

(analogous to black hole entropy and holographic principle). 

(We leave questions about reference frames and the progres-

sion of nodes beyond the boundary deliberately open.) 

Distance (between two events suitably defined) is state 

counts per unit mass-energy (required to make state interac-

tions). 

Time is a change in state counts between two events at a 

point in space (in effect, entropy increase), again per mass 

unit. 

Velocity is just the usual distance divided by time, but in a 

state count system this is a unit-less factor with vector direc-

tion. 

Momentum, which is due to inertial mass in Newton’s 
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theory, is then simply gravitational mass state counts times the 

unit-less velocity vector, and inherently momentum-inertia is 

linked to the gravitational mass state counts, so equivalence is 

(or should be) built-in. 

Gravity should turn out to be (if the conjectures work out) 

due to a greater distribution of path-dependent state counts in 

the direction of mass units available for state-interactions 

(graph connections with state constraints), so that the proba-

bility of state evolution is in the direction of higher density 

state availability (greater entropy). 

Whether or not such a program of investigation produces 

new fundamental insights, it is likely that a basic view of 

gravity and space-time in terms of state-counting and proba-

bility of moving toward higher state counts may potentially 

provide an approach to the laws of physical relativity with 

fewer or different assumptions, which though not easier may 

be more convincing at lower levels of the educational ladder. 

If not already, then eventually public resistance to practical 

limitations on space travel may have adverse impacts on pol-

icy and the future of life from Earth. Even physicists complain 

of the disappointment of giving up their dreams of fast-

er-than-light or wormhole travel. While thermodynamic ar-

guments are obscure except to physicists, and holographic 

principle arguments obscure to all but specialists, counting 

arguments are plain even in elementary school. With a few 

exceptions, gravitational physics has resisted the 

re-conceptualization process for 100 years since the equiva-

lence principle was used to reason that space-time must “be 

the field,” and for good reason. Most physicists don’t trust that 

the equivalence principle would emerge along with emergent 

space-time.  

Even in Verlinde’s approach, space-time as the field is 

hiding beneath the assumption of equivalence and not really 

emergent. But the connection to entropy is insightful, and a 

re-conceptualization along the lines of what happened with 

both Fermat’s Last Theorem and the four color theorem might 

be accomplished if the state-counting approach can be made 

uniform with respect to mass-energy itself, so that equivalence 

emerges exactly. Finally, we must trust that any favorite co-

ordinates, that penetrate spaces unobservable to those un-

willing to enter without right of return, will map to the entropy 

model in a way consistent with thermodynamics, which will 

distress some. However, they only must map to observable 

thermodynamics, so there is nothing really new in this except 

the discomfort of skirting close to well-verified physical law. 

Some investigators are already arguing the case that real 

physical gravitational objects would be compatible with 

reachable state-count spaces [18-19], and even that entropy is 

a principle agent in effecting this [20]. 

6. Conclusion 

At less than six pages for the proof without discussion and 

research suggestions, and with no difficulty beyond 10
th

 grade 

geometry, the foregoing appears to qualify as a human reada-

ble solution to the four-color problem. In any case, a relevant 

new conceptualization is presented as a basis for further work. 

Additionally it has been shown how the idea of 

4-color-ability can be applied in higher dimensions through 

the use of a plane in those dimensions. If they are regular 

enough to enforce four-color-ability on such a plane, then 

likely exotic features are excluded. A second approach to 

unifying the four color problem with higher dimensional 

problems is to view them as having a common basis in entropy, 

or constrained state counting. This might or might not produce 

additional insights into space-time and gravity, or more ac-

cessible approaches. But connecting the entropy argument to 

the foregoing equivalence of plane color-ability with exclu-

sion of exotic features suggests interesting theoretical argu-

ments. 

The difficulty of the seemingly simple four color map 

problem has led to discussion of the possibility that such 

problems may not have simple or even human-reachable 

(without automation) solutions. This may be true. It is not 

disproved by finding a purely human solution to the four color 

problem. But it is possible that, like in the case of Fermat’s 

Last Theorem, future changes in conceptualization can impact 

the accessibility of a difficult problem. 
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